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I. INTRODUCTION 

The need for better understanding of households' con-

sumption choices with respect to electricity is widely ap-

preciated . Utilities base their capacity planning, marketing 

and pricing strategies upon their knowledge and forecasts of 

consumer demand . Regulators must ex amine and evaluate 

utility performance and policy based upon their understanding 

of the consuming market. Legislatures and social agencies 

require an understanding of electricity demand in order to 

structure effective energy assistance programs for low and 

fixed income citizens . 

In order to analyze the need for future power plant con-

struction, utilities must have reliable forecasts of 

electricity use. Inaccurate forecasts can have serious 

repercussions . If a uti l ity fails to build additional needed 

capacity, blackouts may result. Additionally , prospective 

and existing customers may locate elsewhere to be assured of 

an adequate energy supply. If a utility builds an unneeded 

power plant , customers and/ or stockholders may be faced with 

substantial financial burdens . Because large resource deci-

sions are made based upon electricity demand forecasts, the 

need for accuracy is very important. 

Knowledge of electricity demand and consumer behavior 

also affects the marketing decisions of utilities. Many com-

panies are currently using or investigating energy management 
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as a method of avoiding construction of new generating 

facilities. A recent publication by Smith (1981) suggests 

that three methods exist to curtail growth in electricity 

use. First, a reduction in demand may be achieved by legis-

lation limiting use, self-denial, or economic manipulation of 

demand. Second, increases in the efficiency of appliances 

could slow energy usage growth . Third, the substitution of 

alternative fuels could be used. If economic methods are to 

be used, it will be necessary to better understand the fac-

tors which affect electricity use . Also, a better under-

standing of the components of electricity demand will allow 

utilities to estimate the effects of higher efficiency ap-

pliances on electricity sales. 

Utility pricing decisions also require detailed 

knowledge of customers consumption habits. Many utilities 

offer their customers a time-of-day (TOD) rate structure. The 

purpose of TOD rates are twofold : (1) to help the utility 

shift its sales to lower demand times (off-peak) and (2) to 

allow customers to minimize their utility charges . These 

rates allow a utility to utilize newer, more efficient gener-

ating facilities by reducing peak load and the need for pur-

chasing costly on-peak power or generating with peak load 

generators. In order to design a TOD rate, the utility must 

have an accurate estimate of the price sensitivity of its 

sales throughout the day . 
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Promotional rates also require that a utility identify 

factors important to sales . If a utility wishes to promote 

particular end uses of electricity (electric spaceheat for 

exa~ple) it must be able to identify the factors which affect 

that market . In order to design a rate which will predict-

ably increase the saturation of electric spaceheat , the 

utility must know how electricity prices and other factors 

affect spaceheat use . Thus, utility pricing policies are 

very dependent upon an understanding of household consumption 

habits . 

Public utility commissions (PUCs) oversee utility 

policies and activities as they relate to consumers. PUCs 

must have essentially the same knowledge and information 

about consumers as utilities in order to evaluate utility ac-

tions . Recently, PUCs have begun to closely analyze utility 

power plant additions due to the high cost of additional gen-

erating capacity . Rate structures are also scrutinized to 

assure that residential consumers are only paying their " fair 

share" of utility expenses . PUCs also have come under some 

pressure to study the "rate shock" which may occur when 

utilities increase rates to reflect new nuclear plants in 

rate base . It appears that PUCs will need to commit more 

resources to the study of consumer demand in order to answer 

these and other questions in the future. 
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Numerous state legislatures (most notably California) 

have taken great interest in residential electricity rates . 

The concept of "lifeline'' rates has become a popular notion 

in recent times. Lifeline rates are to be structured such 

that low and fixed income households may consume some minimum 

level of electricity at a cost that will not cause unneces-

sary financial hardship. Discovering what this lifeline or 

base use is, and what the appropriate charge should be has 

proven to be quite difficult . Numerous factors such as 

household size, income, climate and health problems would ap-

pear to be important in setting these rates (Burgess and 

Paglin (1981)). Other factors such as actual unit energy 

consumptions (UECs) of appliances and surveys detailing the 

appliance holdings of low income households could also help 

to define lifeline consumption levels . 

Econometric methods allow for the in-depth analysis of 

residential electricity consumption. The relationships of 

various factors to electricity consumption can be estimated 

and examined. Econometric models may allow utilities to bet -

ter forecast their sales and aid in marketing and rate deci -

sion. The effects of various rate changes and rate structure 

can be estimated prior to their enactment . PUCs can use 

econometric models to analyze the rate shock effects on con-

sumers as well as the effects of other price changes. Models 

may also help PUCs evaluate utility decisions regarding 
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capacity additions. Legislators can utilize econometric 

models to estimate lifeline consumption and the appropriate 

rates to accomplish social goals and objectives. 

This study will examine residential energy consumption 

and formulate and estimate models of demand which will ex-

plain that consumption . The general methodology of this 

study will be to review the existing econometric studies in 

the field for theoretical and empirical model specifications , 

attempt to discover and correct deficiencies in those 

studies , postulate and estimate demand models, and interpret 

those models in a practical and useful manner . 
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II. DISCUSSION AND EVALUATION OP THE LITERATURE 

Until the mid 1970s, most econometric studies of 

residential electricity demand relied upon some type of ag-

gregate data for estimation. In most cases, average 

electricity consumption per customer (on a state or SMSA 

level) was related to other "average" explanatory variables 

such as average price per kilowatt-hour (kWh) , average 

household income, average household size , and so forth. The 

use of aggregate data prevented the examination of some of 

the household level determinants of demand, such as explicit 

appliance stocks and the distribution of income . Some ex-

amples of studies employing aggregate data are Houthakker 

(1951); Moore (1970); Wilson (1971); Halvorsen (1975) ; 

Taylor, Verleger and Blattenberger (1977) ; and Taylor, 

Blattenberger and Rennhack (1982) . 

Beginning with Wilder and Willenborg (1975) researchers 

began to examine household level data, generally utilizing 

household characteristics surveys and utility billing 

records. This mitigated the possible biases and limitations 

associated with aggregate data and allowed for more detailed 

examination of the factors thought to affect electricity 

usage at the household level. 

Two principal approaches have been followed : (1) single 

and multiple equation models of total household electricity 

demand and (2) conditional demand analysis which attempts to 
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model the various end-uses of electricity consumption. Both 

of these approaches have produced reasonable and useful 

results, although applications of the relatively new condi-

tional demand analysis have been limited by its need for ex-

tremely detailed household appliance holdings information. 

This review will focus first on the total household demand 

method and then examine conditional demand analysis. 

A. Total Household Demand 

One of the first studies utilizing household level data 

was undertaken by Wilder and Willenborg (1975) . This study 

used appliance and demographic surveys and monthly utility 

billing records for 274 households in a single metropolitan 

area. In postulating their model of consumption, Wilder and 

Willenborg recognized that prices and consumptions levels are 

simultaneously determined through the interaction of a demand 

equation and a price equation, and the inherent inverse 

relationship between consumption and average price at-

tributable to the decreasing block rate structure. This 

simultaneous approach to electricity demand modeling was 

pioneered by Halvorsen (1975) . 

Wilder and Willenborg's price equation, simulating the 

rate schedule faced by the households , postulated the average 

price per kWh to be a function of consumption per household 

and a dummy variable denoting "all-electric" households. Be-

cause of their total dependence on electricity and thus 
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necessarily higher average consumption, all-electric 

households are billed according to a rate schedule which dis-

plays lower marginal prices in the high consumption blocks . 

This preferential treatment given to all-electric homes al-

lows for "shifts" of the rate schedule "supply curve" and 

enables identification of the demand relationship . 

Drawing upon the derived demand nature of electricity 

consumption, Wilder and Willenborg estimated a four equation 

model which incorporated equations for : (1) the stock of 

electrical appliances, (2) the size of the residence, (3) the 

household's electricity demand , and (4 ) the rate schedule. 

As a proxy for the household appliance stock , Wilder and 

Willenborg chose the number of appliances , A, (chosen from a 

list of five major electric i ty consuming a ppliances) owned by 

a household . 

The appliance stock equation used was : 

u2 e 

where : A = number of appliances owned chosen from a list ; 

Y • annual gross family income ; 

R = dummy variable for race of household; 

N = variable representing age of household head ; 

u2 = random error term . 

Following a logarithmic transformation the equation was 

estimated by ordinary least squares (OLS). All coefficient 
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estimates were of the expected signs and significant at the 

5% level. The R-square was 0.31, not uncharacteristically 

low relative to other cross-sectional estimations of ap-

pliance stock models (for example, see Garbacz (1983)). 

The residence size equation, also estimated in logarith-

mic form using OLS was postulated as: 

H Yal Fa2 a3R ul = a e e ; 0 

where: H = number of rooms in residence; 

y = annual gross family income; 

F = total number of persons residing at dwelling; 

R = dummy variable for race of household; 

ul = random error term. 

Again, the estimated coefficients were all of the ex-

pected sign, however only income and family size were sig-

nificant at the 5% level. The R-square of 0.27 indicated the 

relatively, but not unusually low explanatory power of the 

model. 

The preceding two equations, appliance stock and 

res~dence size, could be consistently estimated by OLS be-

cause none of the explanatory variables were considered to be 

endogenous. The relatively low R-square values suggest that 

improvements may be possible in the two equation specifica-

tions. First, theory implies that the price of electricity 

(a complementary good) might be a factor in the size of the 
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appliance stock. Other things equal , lower electricity 

prices would probably tend to encourage the ownership of 

electrical appliances. The inclusion of price in the ap-

pliance stock model would add an endogenous variable, and 

thus require a simultaneous equation estimation approach for 

appliance stock equation. Second, the addition of a variable 

indicating the dwelling age might aid in explaining the num-

ber of appliances possessed . It may be the case that newer 

homes, because of higher current-carrying wiring and recent 

trends toward dual career families (and the need for more 

labor-saving appliances) , might possess more electrical ap-

pliances. These modifications to the appliance stock equa-

tion might improve its explanatory power. 

The residence size equation may yield improved results 

if residence square- footage , a more accurate size measure, 

were used instead of number of rooms. Additionally , dummy 

variables to indicate the dwelling type (single family , 

multi-family detached, apartment, or mobile home) might in-

crease the model's explanatory power (Hirst, Goeltz, and 

Carney (1982)). 

The demand equation used by Wilder and Willenborg was : 

E = co ycl Hc2 Ac3 c4D p c5 u3 e e a 
where : E = household electricity consumption in kWh ; 

y = annual gross family income ; 

H = number of rooms in residence ; 
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A = number of appliances owned; 

D = dummy variable indicating season of survey; 

Pa= average price per kWh; 

u3 = random error term. 

The demand equation and the following price equation 

were estimated in logarithmic form using two-stage least 

squares ( 2SLS) : 

p :::r d Edl 
a O 

d2L u4 e e 

where : Pa = average price per kWh; 

E :::r household electricity consumption ; 

L = dummy for "all-electric" house; 

u4 • random error term . 

The R-square values associated with the 2SLS estimation 

were 0.50 and 0 . 35, respectively. All estimated coefficients 

in both equations were significant at the 5% level and of the 

expected sign. Because the estimation occurred in log-log 

specification, the estimated coefficients represent constant 

elasticities. The estimated price elasticity was -1.00 and 

the estimated income elasticity was 0.16. The authors com-

pared their elasticity estimates with studies using aggregate 

data and found their results to be consistent with the pre-

vious works . 
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Wilder and Willenborg also estimated the demand equation 

using OLS, a technique which would likely attribute the 

inherent inverse relationship between consumption and price 

due to decreasing block pricing and the negative slope of the 

demand curve. The R-square reported was 0 . 76, with all es-

timated coefficients significant at the 5% level. The OLS 

estimation appeared to overstate price elasticity (-2.65 ver-

sus -1 . 00) and understate income elasticity (0.12 versus 

0.16). 

The study by Wilder and Willenborg serves to illuminate 

many of the issues considered in other studies of the 

residential demand for electricity. Among the issues are: 

(1) choice of a price variable (marginal versus average) , (2) 

measurement of the electricity consuming appliance stock 

(weighted index versus simple sum), (3) functional form of 

the estimating equation(s), (4) modeling of weather effects 

(interaction terms versus simple degree-days), and (5) selec-

tion of other explanatory variables for use in the demand 

equation. Two studies to be examined used "micro- data" , 

meter readbook or census-tract data. Although these studies 

relied upon aggregate data, the level of aggregation was much 

lower than the level usually encountered and the studies 

address several of the issues mentioned above. Additionally, 

several studies utilizing nationwide, household level data 

will also be examined for their insights and contributions. 
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1. Price Variable Selection 

A study by Acton , Mitchell and Sahlberg (1980) addressed 

the declining marginal price rate structure and its 

representation for modeling purposes. Because of the multi-

price rate schedule, which generally includes a fixed monthly 

charge , the budget constraint the household faces is non-

convex and piece-wise linear. This leads to the possibility 

of multiple utility maximizing bundles of electricity con-

sumption and "other goods" . However, because the relation-

ship between marginal price and quantity demanded is single-

valued (determined by the rate schedule), the observed demand 

curve approximates an ordinary demand curve . An individual 

household's demand curve will be discontinuous in the regions 

of the block rate changes , but aggregation across customers 

facing several tariffs with different rate blocks will fully 

approximate a continuous demand curve. Thus , the use of mar-

ginal price, as suggested by marginalist economic theory, 

will lead to a demand function which may be estimated using 

econometric methods. 

The need for customers facing different block rate 

structures makes the use of marginal price questionable for 

the study currently being undertaken. Due to the cross-

sectional time-series data available to this study, the pool-

ing of data will provide some variation in tariffs. This 

suggests the use of both marginal price, and average price 
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with a price equation for the modeling purposes of the cur-

rent study. 

Average price has often been used in studies of residen-

tial electricity demand. Some authors have argued that 

households respond to their total bill, and seldom 

familiarize themselves with marginal prices (Garbacz (1983)). 

If this is the case, then from a behavioral standpoint the 

use of average price is justifiable. However, it should be 

noted that it may not be necessary for households to be aware 

of marginal rates in order to respond to them. Parti and 

Parti (1980) argue that the choice of price variable should 

be made largely on empirical grounds and proceed to use a 

lagged average price on that basis . Numerous other studies 

also debate the issue with differing conclusions. 

In general, average price is a biased proxy for marginal 

price (Acton, Mitchell , and Sohlberg (1980)) . First, under a 

decreasing block rate schedule, the average price approaches 

the marginal price as electricity consumption increases. 

Average price will be less representative of marginal price 

in low consumption households and more representative in high 

consumption households. This will cause estimates of the 

slope of the demand curve to be biased upward. Halvorsen 

(1975) has demonstrated that when using a logarithmic 

specif !cation for the pri ce and demand functions the marginal 

and average price elasticity estimates are identical and the 
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estimated demand funct i ons differ only by a c ons tant . That 

result suggests that the non-uniform distortion between 

average and marginal price is not a problem if the logarith-

mic specification is accurate, and elasticities are the ob-

ject of investigat i on . 

Second , because average price is usually measured as 

average revenue per kWh , an errors-in- variables bias occurs. 

The inclusion of the dependent variable as a divisor of an 

independent variable wil l bias the estimated price c oeffi -

cient away from zero . The magnitude of the bias is unknown, 

and future studies o f electricity demand may help to shed 

some light on this issue. 

An average price approach was used by Garbacz {1983) in 

a study ut i lizi ng household data from a national surv e y. The 

three equation model used consisted of : {l ) a demand equa-

tion, {2) an average price equation, and (3) an appliance 

stock equation . Garbacz argued that while average price may 

not be the " best" pric e variable , it served the purpose of 

the study . The three equations were est i mated us i ng two-

stage least squares (2SLS). The price equation was essen-

tially similar to that of Wilder and Willenborg (1975) and 

will not be elaborated upon. 

One other study which used the average pric e method and 

household level data was Hirst/ Goeltz , and Carney ( 1982 ). 

This study used single equation models and OLS estimation to 
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investigate the demand for energy and electricity. The 

authors used average price per BTU of energy as a price vari-

able due to the various fuels in use. Although no explicit 

mention was made of rate structures , it would be reasonable 

to assume that the BTU input to the households was largely 

billed at a decreasing block rate . If so, perhaps a price 

equation and a 2SLS estimation would have been more ap-

propriate. 

Behavioral theory suggests that average price will lead 

to meaningful results, although perhaps not identical to 

those that would be produced using marginal price. Thus, by 

estimating demand models using both average and marginal 

price, this study will empirically investigate the marginal 

versus average price issue . 

2. Appliance Stock Measurement 

One factor which is readily identifiable in household 

electricity consumption is the stock of electrical ap-

pliances. As previously discussed, Wilder and Willenborg 

(1975) used a simple sum of the number of appliances 

possessed by a household (chosen from a list of five 

appliances) . The measure was significant and of the proper 

sign when used in estimation of the demand equation. 

Because all appliances do not consume the same amount of 

electricity, Garbacz (1984b) has suggested that appliances be 

weighted by their relative consumptions of electricity. 
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Using several data sources Garbacz developed weightings for 

twelve appliances based upon average annual usages. Unlike 

Wilder and Willenborg who postulated a recursive model of the 

appliance stock, Garbacz estimated the appliance stock equa-

tion jointly with the demand and price equations. Due to the 

long service lives of major electrical appliances (water 

heaters, furnaces , air conditioners , etc.) the treatment of 

appliance stock as endogenous may be questionable . Other 

studies such as Burgess and Paglin (1981) and Acton, 

Mitchell , and Sahlberg (1980) have used approaches that ex-

plicitly accounted for some major appliances and/ or used 

weighted indexes for other, residual appliances. 

The nature of electrical appliances would suggest that a 

simple , unweighted aggregation may not reflect the true ap-

pliance stock . Garbacz's appliance weighting method appears 

to correct for that deficiency , however it requires accurate 

estimates of appliance consumptions for implementation . A 

third, unexplored approach would entail weighting the ap-

pliances by their kilowatt (kW) ratings and aggregating. 

This would provide an index of consumption potential, which 

unfortunately would not recognize differentials in appliance 

utilization. An empirical analysis may help reveal which 

specification of appliance stock is best suited for use in 

estimating the household demand for electricity. 
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3. Functional Porm of the Estimation 

Most studies of electricity demand have relied upon a 

logarithmic specification of all equations, and log-log es-

timation techniques. This specification implies that the 

derivatives of electricity consumption with respect to its 

determinants are, in general, functions of the levels of all 

independent variables . The corresponding elasticities of the 

specification are constants, however. Based upon Halvorsen 

(1975), the logarithmic specification does imply the same 

price elasticity es timate for either marginal or average 

price approaches . This has likely been a primary reason for 

the use of logarithmic specifications. 

The choice of model specification entails both theoreti-

cal and empirical arguments. Many studies estimate numerous 

specifications and select a "best" model on the basis of 

goodness-of-fit. This criterion along with energy engineer-

ing theory seems appropriate for selection among various 

specifications. 

4. Weather Effects 

Weather is perhaps the single most important factor in 

household electricity consumption during the heating and 

cooling seasons . Most econometric studies either disregard 

weather effects or incorporate a degree- day variable, perhaps 

interacted with structure size . A proper evaluation of the 

modeling efforts used in econometrics first requires an ex-
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amination of the theory of energy engineering. 

The basic household energy balance equation for central 

space conditioning is : 

q = I: i (Ui • Ai • T1 ), i=l ton surfaces; 

where: q = net thermal energy requirement; 

u1 = thermal conductivity of surface i; 

Ai = area of surface i; 

T. = temperature differential across surface i. 
J. 

The energy requirement, q, is net of the effects of any 

heat sources or sinks, such as household members, mechanical 

equipment, and auxiliary heating or cooling devices. Thermal 

conductivity, U , is the inverse of the common "R-value" and 
i 

must be evaluated for each surface enclosing the living area. 

The values of A 
i 

and T 
i 

correspond to the surface area across 

which the heat transfer occurs and the temperature differen-

tial across the surface. It can easily be seen that a com-

plete household space conditioning energy balance requires a 

large quantity of detailed information. 

In their demand equation, Hirst, Goeltz, and Carney 

(1982) used variables to capture the influence of weather and 

structure size on electricity consumption. The cooling vari-

able, CDD, was defined as the product of cooling degree-days, 

floor area, and percentage of rooms cooled. The heating 

variable, HDD, was defined similarly except that the entire 
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household was assumed to be heated. Without further study it 

is unclear how adequate a proxy household size (square feet) 

is for household surface area . The type of house (one or two 

story, ranch, etc . ) would lead to differences in the surface 

area, given the same floor space. 

The use of degree-days is likely to be a reasonable 

proxy for the temperature differential, however knowledge of 

the actual household indoor temperature would perhaps provide 

a more accurate base than the conventional 65 degree F. base 

in use. 

In his three-equation model of electricity use, Garbacz 

(1984a) includes cooling and heating degree-days in both the 

demand and appliance stock equations . It is postulated that 

the weather faced by the household determines both the size 

of the space conditioning stock and its utilization rate . In 

the appliance stock equation, heating and cooling systems are 

weighted by the number of rooms in the dwelling. Thus , 

Garbacz indirectly makes space conditioning consumption a 

function of the number of rooms and degree-days. The same 

criticisms apply to this study as to the previous one, with 

the additional question of whether the number of rooms is su-

perior to square-footage as a proxy for dwelling surface 

area . 

Acton, Mitchell, and Sohlberg (1980) follow an approach 

similar to Garbacz, including degree- day measures in both the 
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appliance stock and demand equations. No attempt was 

reported to include dwelling size, possibly because the study 

utilized meter readbook data and average household size was 

not reported. 

The variable specification for weather in these and 

other studies favors a degree-day or degree-day and dwelling 

size product. Without ' the availability of detailed household 

structural information , the product of degree-day and dwell-

i ng size seems to be a practical solution. 

~ - Other Explanatory Variables 

Of the studies previously discussed in part or in whole, 

most incorporate the price of electricity, household income, 

appliance stock, and a measure of household size (either 

structure size or number of occupants) into the demand equa-

tion. The studies of Hirst, Goeltz, and Carney (1982 ) , 

Acton, Mitchell, and Sahlberg (1980) , and Garbacz (1984a ) 

also examine the influence of weather by either including it 

directly in the demand equation or indirectly through an ap-

pliance stock equation. 

Hirst, Goeltz, and Carney introduce the year the dwell-

ing was built and disaggregate the number of occupants into 

adults and children. They argue that older homes may have 

technological constraints on electricity consumption (such as 

lower current-carrying wiring). These technological con-

straints may also lead older homes to have higher average 
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consumption. Those homes may have inadequate thermal insula-

tion, leading to higher usage. This would ultimately appear 

to be an empirical question. The disaggregation of members 

into children and adults allowed study of their differential 

effects on consumption . It was found that children had a 

lesser effect on consumption than did adults. 

Two studies dealt with the issue of the price of sub-

stitute fuels, both through the demand equation and one 

through the appliance stock equation in addition. The em-

pirical results are mixed , with incorrect signs and insig-

nificant coefficients occurring in several of the months used 

for estimation. The problems of substitute fuel availability 

and technological substitution possibilities complicates the 

choice of a substitute fuel . Garbacz (1984a) created an in-

dex of alternative fuel prices to overcome some of the dif-

ficulties. This appears to be an area for future research 

and empirical study . 

The variables suggested by these and other studies for 

use as determinants of demand include own-price, household 

income , dwelling size, number of household members, a measure 

of weather , an alternative fuel price and a measure of the 

appliance stock. Several specifications of the variables have 

been suggested and warrant further study . 
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B. Conditional Demand 

One of the earliest published works utilizing the condi-

tional demand analysis approach is that of Parti and Parti 

(1980). This type of econometric modeling attempts to disag-

gregate the total household demand for electricity into its 

component parts . An econometric model is postulated for each 

end-use of electricity (i.e., water heating, space heat, 

etc . ) and the individual end-use equations are summed to ar-

rive at total household demand. 

Estimation is carried out using the observed variable, 

total household electricity use, as the dependent variable. 

This method of estimating the end-use consumptions of 

electricity is much less expensive than direct metering, yet 

still allows for the examination of the various factors that 

effect the consumption of electricity through each of several 

specific appliances. 

In their research, Parti and Parti postulated that the 

electricity use through a given appliance could be written 

as: 

where: Ei = electricity consumption of ith appliance; 

f i = household demand function of ith appliance; 

v = vector of explanatory variables . 
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If the demand functions are linear then the electricity 

consumption through the ith appliance can be written as: 

Ei = Ij b 1 jv j for i = 0 to N; ( 1 ) 

where : bij = parameter associated with v j; 

VO = constant term; 

EO = consumption through unspecified appliances . 

Thus, if metered data were available on the ith ap-

pliance, this demand function could be directly estimated 

using econometric methods . 

The lack of availability of appliance-level consumption 

data led Parti and Parti to aggregate demand equations across 

the appliance holdings of the household to arrive at total 

household consumption. This can be written as : 

E = 
where : E = total household consumption; 

= consumption through appliances 1 to N or 
through the unspecified group of appliances . 

For any household, Ei is given by equation (1) if the 

household possesses the ith appliance. For households not 

( 2 ) 

possessing the 1th appliance, E1 is equal to zero. For 

appliance i, define a dummy variable Ai which takes the value 

of 1 if the ith appliance is present and the value O other-

wise. Equation (2) can then be rewritten as: 
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( 3) 

where E, bij' Vj' and Ai are as previously defined . 

Numerous parameter restrictions were imposed prior to 

estimation due to the extremely large number of parameters 

involved . For example, the price, income, and family size 

effects were constrained to be equal for several of the ap-

pliances . 

Parti and Parti also demonstrated that an estimation of 

the conditional demand function with independent variables in 

their deviation form would directly determine the average 

household electricity use per appliance. The average 

electricity use through the 1th appliance can be written as: 

where : Ei = average estimated use through ith appliance ; 

Vij = conditional means of explanatory variables. 

Multiplying each side of equation (4) by Ai ' summing 

across 1 , and rearranging : 

( 4} 

Adding the right hand side of equation (5) to the right hand 

side of equation (3) provides: 

Equation (6) can be rearranged yielding : 
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( 7 } 

demonstrating that the intercept terms reflect the average 

electricity consumption through each of the ith specified ap-

pliances when the explanatory variables are used in deviation 

form . The means of the explanatory variables were evaluated 

for only those households which possessed the ith appliance . 

The estimated values of the dummy variables, Ai' (i = O 

to N} are the average estimated electricity usages of the N 

specified appliances and the unspecified set of appliances. 

Thus, the conditional demand analysis approach provides both 

parameter estimates of the effects of behavioral, economic, 

and technical variables on consumption and estimates of 

average annual appliance electricity usage. 

The explanatory variables included in the demand equa-

tions were the price of electricity, household income, 

household square-footage, number of household members , and 

two variables to capture weather effects. Parti and Parti 

chose to use a weighted average of the previous two months 

average price of electricity based upon an empirical inves-

tigation of various price measures. 

The authors suggest that the choice of a price variable 

is largely an empirical matter, in contrast with other works 

discussed previously in this paper which suggest the supe-

riority of marginal price . The two weather variables, one 
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describing heating requirements and one cooling requirements, 

were constructed using daily high and low temperatures. 

Parti and Parti explain that the measures are more indicative 

of the weather profile than are the traditional degree-days 

based on average temperatures . Each of the explanatory vari-

able did not appear in every appliance demand equation and 

several interaction terms were used where appropriate (for 

example, weather was interacted with household square-

footage) . 

The method of estimation used in this study was an in-

strumental variable approach . Parti and Parti regressed 

variables indicating rate zones (dummies), the standardized 

household consumption of electricity, and the number of days 

in the billing cycle on average price to obtain the in-

strumental variable estimator. This predicted value was then 

used in the estimation of the demand equation . The data for 

this study were comprised of survey interviews of 5286 

San Diego area households augmented with accompanying utility 

billing records and weather information . 

Two basic sets of empirical results were presented: 

(1) the estimated price and income elasticities on a monthly 

basis, and (2) the estimated average annual use per ap-

pliance. For the most part, the estimated price elasticities 

were reasonable when compared to other studies (Wilder and 

Willenborg (1975); Acton , Mitchell, and Mowill (1975) ; and 
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Taylor, Verleger, and Blattenberger (1977)) . The average 

annual price elasticity reported was -0.58, arrived at by 

weighting the monthly elasticities by the fraction of annual 

consumption occurring in that month . The highest monthly 

price elasticity was reported for December, while the lowest 

was in January . This finding appears to be counter-

intuitive, as one might expect adjacent months to have 

similar characteristics. Income elasticity was very consis-

tent throughout the year with a weighted-average annual es-

timated value of 0 . 15 . 

When compared to engineering estimates of average annual 

electricity use, the conditional demand estimates were found 

to be similar, however not in total agreement. Conditional 

demand estimates of electricity use through space condition-

ing systems were in general one-half the engineering es-

timates. The moderate weather during the period of data col-

lection was suggested as a possible cause of the discrepancy. 

Average use estimates for water heaters, dishwashers , and 

color television sets were higher than the engineering es-

timates. Other appliance use estimates (black and white 

television sets, dryers, freezers, electric ranges, and 

refrigerators) were generally bracketed by their engineering 

estimates. 
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III. MODEL FORMULATION 

Drawing on the previous discussion of the literature , 

economic and econometric methods, and energy engineering 

practices, several models of the residential demand for 

electricity will be formulated. Three seasonal specifica-

tions will initially be postulated , reflecting the type of 

space conditioning equipment (heating, air conditioning, or 

neither) likely to be in use. The three seasons to be used 

in the analysis are: (1) the heating season (November 

through April) , (2) the cooling season (June through 

September), and (3) the transitional season (May and 

October). 

The seasonal specification was chosen because studies by 

Garbacz (1984b) , Part i and Parti (1980), and Acton, Mitchell , 

and Sahlberg (1980) suggest price and income effects are more 

similar within season than between seasons . For example, 

Garbacz concludes that summer months are more price inelastic 

than winter months, potentially attributable to the lack of 

fuel substitution available for air conditioning. Acton, 

Mitchell , and Sahlberg show similar results for price elas-

ticities. 

The months were grouped into seasons due to the rela-

tively homogeneous weather occurring on average in the in-

cluded months. The heating season contains on average 90 . 7 

percent of the 65 degree base seasonal heating degree-days 
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and no 65 degree base seasonal cooling degree-days. The 

cooling season contains 91 . 4 percent of the average seasonal 

cooling degree-days and only minimal heating degree-days. 

The transitional months contain both heating and cooling 

degree-days, however, neither contains more than 6.5 percent 

of the average seasonal heating or cooling degree-days . 

It will be assumed that electrically heated households 

will utilize their heating systems during the heating season 

and that air conditioned households will utilize their air 

conditioning equipment during the cooling season. Further, 

it will be assumed that neither heating nor cooling systems 

are in use during the transitional months. 

The formulation will first proceed for the models of to-

tal household demand . This will be followed by model 

development using the conditional demand analysis technique . 

A. Total Household Demand 

The residential demand far electricity is a derived 

demand, in part derived from the demand for the services 

provided by electricity consuming equipment . As such, the 

stock of appliances and the associated utilization rates of 

those appliances require consideration when specifying the 

demand equation. Real electricity price and real household 

income are two economic factors affecting the utilization 

rate of the appliance stock (Wilder and Willenborg (1975)). 

Additionally, the size of the dwelling, the number of 
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occupants, and the weather will also affect the intensity of 

use of the appliance stock. These factors will be incor-

porated into the three seasonal demand equations. 

1. Primary Beating Season Models 

The basic demand equation to be estimated for the pooled 

months in the heating season is: 

USE = bo + blPa + b2Y + b3ADULTS + b4CHILD + b5APPL 

+ b6SQFT*HDD*DUMH + b 7SQFT*HDD*(l-DUMH) 

+ b; 

where : USE = household electricity use in kWh; 

= ex-post average real price of electricity 
in $/kWh (fixed service charge extracted) ; 

Y = real household income in $; 

ADULTS = number of adult occupants ; 

CHILD = number of child occupants ; 

APPL = simple-sum of appliances selected from : 
electric clothes dryer 
food freezer 
electric range 
dishwasher 
microwave oven 
clothes washer; 

SQFT = dwelling size in square feet; 

HOD = 65 degree base heating degree-days; 

DUMH = dummy variable (:1 if electric heat, 
=O else); 

b = random error. 

( 1 ) 

The consumption variable (USE) is from utility billing 
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records and measures the total household electricity 

consumption during the month. The price variable (P is the 
a 

average price of electricity ((total utility bill less fixed 

service charge)/total kWh use) and is also from utility 

records. Average price is deflated by the CPI-U (1967=100) 

to reflect real price. Income (Y) is the midpoint value of 

an income range response collected by a telephone survey of 

participating households. Income is also deflated by the 

CPI-U for the first month of the study to reflect real in-

come. The number of adults (ADULTS) and number of children 

(CHILD) are coded actual from the survey data. 

Hirst, Goeltz, and Carney (1982) found significant dif-

ferences in the relative effects of children and adults on 

household consumption, and thus, the number of household oc -

cupants will be disaggregated in the current study . 

The appliance stock measure (APPL) is the number of the 

following appliances possessed by the household: electric 

clothes dryer, food freezer , electric range, dishwasher, 

microwave oven, and clothes washer . This index is similar to 

that used by Wilder and Willenborg (1975) . 

The final terms, SQFT*HDD*DUMH and SQFT*HDD*(l-DUMH), 

represent the effect of weather per square foot of dwelling 

for electrically heated and non-electrically heated homes, 

respectively. Weather is measured by 65 degree base heating 

degree-days. These variables allow for the differing effects 
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of weather between the two household types. Energy engineer-

ing theory suggests that both household types will increase 

their utilization of space conditioning equipment as more 

degree-days are incurred, and electrically heated homes will 

have a larger use of electricity per degree-day . 

Because of the decreasing block pricing used to price 

electricity, the price of electricity is inherently nega-

tively related to the quantity purchased . If left uncor-

rected , this reverse causality would be likely to ascribe a 

larger negative effect to the estimated price coefficient 

than is actually present . This study will postulate a price 

equation similar to that of Wilder and Willenborg (1975) and 

Garbacz (1984a) to describe the structure of the price 

relationship . The price equation for months of the heating 

season is : 

Pa = a 0 + a 1USE + a 2DUMGEN + a 3DUMRATE 

+ a 4DUMFEE + a ; 

where : DUMGEN = dummy for pre / post generation addition , 
(=O if pre, =1 if post); 

( 2 ) 

DUMRATE = dummy for electrically heated home rate code 
(=1 if electric heat, =O otherwise); 

DUMFEE = dummy for franchise fee 
(=1 if 1% fee, =O otherwise); 

a = random error. 
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The dummy variable indicating pre/post generation 

facility addition (DUMGEN) demarcates an approximately 25 

percent general rate increase collected after the electric 

plant generation addition. The dummy variable indicating the 

customer preferential rate (DUMRATE) denotes those households 

consuming under the lower price schedule during the heating 

season. DUMRATE and DUMH (used interactively in the demand 

model with weather effects) refer to the same subset of cus-

tomers, those using electric heat . The dummy variable, 

DUMFEE, denotes customers subjected to a 1% city fee. 

In the first stage of the 2SLS estimation, the exogenous 

variables of equation (1) are substituted into equation (2) 

to obtain the predicted average price equation. These pre-

dicted prices are designed to be purged of their correlation 

with the error term in equation (1). Following estimation, 

these predicted average prices are then used in the second 

stage of the 2SLS to estimate the demand equation (1). The 

first stage price equation (in substituted form) to be es-

timated is: 

Pa= z 0 + z 1Y + z 2ADULTS + z 3CHILD + z 4 APPL 

+ z 5SQFT*HDD*DUMH + z 6SQFT*HDD*(l-DUMH) 

+ z 7DUMGEN + z 8 DUMRATE + z 9DUMFEE + z ; (2a) 

The variables DUMGEN and DUMFEE provide identification 

as they are exogenous to the demand equation (1) and provide 
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information regarding exogenous price changes. Estimation 

results for both equation (2), the structural price model, 

and equation (2a), the first stage price model will be 

presented. When additional demand/ price models are specified 

in this chapter, only the structural demand and price models 

will be presented. Estimation (2SLS) will occur using the 

substitution method presented above. 

In addition to the linear specification, logarithmic 

specifications of the two previously outlined models will be 

investigated using the two-stage least squares estimation 

method . 

The demand and price equations to be estimated in double 

log form are : 

ln(USE) = do + d 1ln(P) + d 2ln(Y) + d 3ln(ADULTS) 

+ d 4 ln(CHILD) + d5 1n(APPL) 

+ d 6 ln(SQFT*HDD)*DUMH 

+ d7 ln(SQFT*HDD)*(l-DUMH) + d; ( 3 ) 

and 

ln(Pa} =: co + c 1ln(USE) +c 2DUMGEN +c3DUMRATE 

+ c 4 DUMFEE + c; ( 4 ) 

where c and d are random error terms . The resulting es-

timated coefficients represent constant elasticity estimates 

(except for dummy variable coefficients). When natural 
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logarithm arguments would be zero, the value of the argument 

will be set to 0.0001 as per Garbacz (1984a) to avoid the un-

defined nature of logarithms of zero. 

In order to investigate the effects of decreasing block 

pricing, if left uncorrected by a price equation and 2SLS, 

equations (1) and (3) will also be estimated using OLS. Fur-

ther , the effect of using the marginal price of electric ity 

will be investigated by again estimating equations (1 ) and 

(3) using RMP, real marginal price of electricity in place of 

the real average price . 

2 . Alterna tive Beating Season Models 

As an alternative to the appliance measure in the basic 

demand equations (1) and (3) , a new measure of the appliance 

stock, APPLl, will replace APPL . The alternative measure 

weights each appliance possessed by the household using Gar-

bacz (1984b) weighting scheme . The weights reflect the re l a -

t i ve average electricity consumed through t he various ap-

pliances. The weights that will be used are : 

Electric c lothes dryer = 11 ; 

Food freezer = 16 ; 

Electric range = 8 · , 

Dishwasher = 4 ; 

Microwave oven = 2 ; 

Clothes washer = 1 . 
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This weighting structure is thought to better reflect 

the electricity usage effects of each of the possessed ap-

pliances . 

The alternative demands equations replacing equations 

(1) and (3) are: 

and 

USE = eo + elPa + e2Y + e3ADULTS + e4CHILD 

+ e 5APPL1 + e 6SQFT*HDD*DUMH 

+ e 7SQFT*HDD*(l-DUMH) + e ; 

ln(USE) = to + f lln(P) + f2ln(Y) + f3ln(ADULTS) 

+ f 4 ln(CHILD) + f 5 ln(APPL1) 

+ f 6ln(SQFT*HDD)*DUMH 

+ f 7ln(SQFT*HDD)*(l-DUMH) + f ; 

( 1 I ) 

( 3 I ) 

where e and f are random error terms . The price equations , 

equations (2) and (4) will be utilized in conjunction with 

equations (1 ' ) and (3 ' ), respectively for 2SLS estimation . 

3 . Priaary Cooling Season Models 

The primary demand equation to be estimated for the 

pooled summer months is : 

USE = ho + hlPa + h2Y + h3ADULTS + h4CHILD 

+ h5APPL + h6SQFT*CDD*DUMAC 

+ h 7SQFT*CDD*(l-DUMAC) + h; 

where : COD = 65 degree base cooling degree-days ; 

( 5} 
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DUMAC =dummy variable (=1 if A/ C present, =O else); 

h = random error. 

The summer period demand equation is comparable to the 

winter period demand equation, with the substitution of COD 

and DUMAC for HDD and DUMH, respectively . 

The price equation to be estimated for the summer months 

is: 

( 6 ) 

where g is a random error term. Absent from the summer price 

equation is the DUMRATE term . DUMRATE is a dummy variable 

indicating those households who consume from a preferential 

price schedule due to their all-electric homes. The dis-

counted rate is not available in the summer months, and thus 

all households base their electricity purchase decisions on 

the same rate schedule . 

Analogous to the winter period model specification, the 

summer month demand and price equations will also be es -

timated in double log form. The two equations are: 

and 

ln(USE) = lo + llln(P) + 12ln(Y) + l3ln(ADULTS) 

+ 14 ln(CHILD) + 15 ln(APPL) 

+ l 6 ln(SQFT*CDD*DUMAC) 

+ l 7 ln((SQFT*CDD)*(l-DUMAC)) + l; (7) 
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( 8 ) 

where l and k are random error terms. 

'· Alternative Cooling Season Models 

As in the winter period case, the variable APPL1, a use-

weighted index of the household's appliances, will be sub-

stituted for APPL in the summer period demand equations (5 ) 

and (7). This yields the alternative demand equations ( 5 ') 

and (7') : 

and 

USE = mo + m1Pa + m2Y + m3ADULTS + m4CHILD 

+ ~5APPL1 + m6SQFT*CDD*DUMAC 

+ m7SQFT*CDD*(1-DUMAC) + m; 

ln(USE) = n 0 + n 1ln(Pa) + n 2ln(Y) + n 3ln(ADULTS) 

+ n4 ln( CHILD ) + n5 ln ( APPL1) 

+ n6ln(SQFT*CDD) *DUMAC 

+ n7ln(SQFT*CDD )*( l - DUMAC ) + n ; 

where m and n are random error terms . 

~- Primary Transitional Season Models 

( 5 I ) 

( 7 I ) 

The primary demand equation to be estimated for the 

transitional month period is similar t o summer and winter 

period models. From the assumption that neither heating nor 

cooling systems are significantly employed during the transi-

tion months, no space c onditioning term is included in the 
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model. Thus, the basic demand equation for the transitional 

period is : 

USE = qo + qlPa + q2Y + q3ADULTS + q4CHILD 

+ q
5 

APPL + q ; ( 9) 

where q is a random error term. The price equation for the 

transitional months is that of the winter period, due to the 

' October through May time period of the preferential 

electricity rate . 

The price equation i s : 

pa= Po+ P1USE + P2DUMGEN + P3DUMRATE 

+ p 4 DUMFEE + p ; 

where p is a random error term . 

( 10) 

The transitional month demand and price equations will 

be estimated in double log specification also . The two 

resultant equations for estimation are: 

and 

ln(USE) = s 0 + s 1 ln(P) + s 2 ln(Y) + s 3 ln(ADULTS) 

+ s4ln(CHILD ) + ssln(APPL) + s; 

ln(Pa) = ro + rlln(USE) + r2DUMGEN 

+ r 3 DUMRATE + r 4DUMFEE + r ; 

where r and s are random error terms. 

( l l ) 

( 12) 
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6. Alternative Transitional Season Models 

As with the summer and winter period models , the 

transitional period estimation will also utilize the use-

weighted appliance stock measure, APPLl . The resultant 

equations (9') and (11') are: 

and 

USE = to + tlPa + t2Y + t3ADULTS + t4CHILD 

+ t 5APPL1 + t; ( 9 ' ) 

ln(USE) = v 0 + v 1ln(P) + v 2ln(Y) + v 3 ln(ADULTS) 

+ v4 ln(CHILD) + v 5ln(APPL1) + v ; ( 11 I ) 

where t and v are random error terms. 

7 . Additional Considerations 

In order to examine the effects of using marginal pri c e 

i nstead of average price, all of the above equations will be 

estimated using the real marginal price (RMP) of electricity. 

Additionally , relative gains in estimating efficiency may be 

achievable if pooling of seasons can occur. Coefficients and 

effects of the various determinants will be investigated and 

the appropriate pooling of data examined . 

B. Conditional Demand 

As previously discussed, conditional demand analysis 

disaggregates the household appliance stock and directly es -

timates the unit energy consumption of each appliance . 

Following the lead of Parti and Parti (1980), an econometric 
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specification for each major appliance will be formulated. 

The individual appliance models will then be aggregated into 

a single equation representing total household electricity 

use. 

As household electricity use is an observed measure, the 

aggregate equation can then be estimated using several tech-

niques. This study will utilize OLS with both the real mar-

ginal price and average price measures. Previous studies 

suggest that average price, and to a lesser extent, marginal 

price may be inherently negatively related to electricity 

use . Thus , the use of these measures may tend to overstate 

the true price effect. 

The major purpose of conditional demand analysis is to 

arrive at electricity use estimates, and not necessarily 

price elasticities. The potential bias introduced will play 

a small role in UEC estimates , and is noted for own-price 

elasticity estimates. 

As discussed by Aigner, Sorooshian, and Kerwin (1984), 

the success of conditional demand analysis in isolating in-

dividual appliance usage and determinants requires that ap-

pliance ownership patterns be well mixed. The need for ap-

pliance dispersion requires that an investigation of ap-

pliance holdings be made prior to model specification . 

The nine major appliances chosen for investigation are 

dehumidifiers, food freezers, electric ranges, dishwashers, 
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clothes washers, electric clothes dryers, air conditioners, 

electric space heating , and microwave ovens . The appliance 

saturation level for each appliance is : 

dehumidifiers (DEHUM) 
freezers (FREEZ) 
ranges (ERANGE) 
dishwashers (OW) 
washers (WASH) 
dryers (EDRYER) 
air conditioners (DUMAC) 
electric heating (DUMH) 
microwave ovens (MWAVE) 

45.7% 
56 . 2 

71.0 
70.5 
90.5 
54.3 
78.0 
10.5 
59.0 . 

The nearly universal ownership of clothes washers . 

(90.5%) suggests that isolating their electricity use via 

conditional demand analysis may prove difficult. Because of 

this high appliance ownership rate , and the relatively low 

electricity consumption of clothes washers, washers will not 

be included in the current study. No other appliance satura-

tion level exceeds that of air conditioners (78.0%) . 

In order to further investigate the dispersion of ap-

pliance holdings, correlation coefficients were calculated 

between each of the remaining appliances . The variables in-

dicating appliance ownership are binary , with 1 indicating 

the presence of the appliance and O indicating that the 

appliance is not owned. The correlation coefficients for the 
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eight appliances are presented in Table 3-1 . 

Those appliances which have the greatest saturation, air 

conditioners, dishwashers , ranges, and mi c rowave ov ens dis-

play the greatest correlation of mutual ownership. As no 

correlation exceeds 0.50 for any pair of appliances , all 

eight appliances will initially be used for analysis . 

Following model estimation, one or more appliances may 

be relegated to the unspecified appliance list if isolation 

of their electricity use fa i ls. Those appliances with the 

lowest electricity use, dishwashers and microwave ovens, will 

be removed from the model first. 

1. Appliance Specific Demand Models 

a. Dehumidifiers The climate in Iowa is var i able , 

with substantial outdoor humidity in the s ummer months and a 

relatively high ground water table . Thus , dehumi difier use 

is not limited to the summer period and may or may not be 

weather sensitive. As a conservative specification, the 

average real price of electricity and real household i ncome 

will be specified as determinants of humidi fier demand . The 

model specification for dehumidifiers is : 

USEl = blO + b l lpa + b12y +el ; (13) 

where : USE1 = electricity consumption t hrough dehumidifiers; 

e 1 = random error ; 

and all other determinants are as previously specified . 
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Table 3-1. Appliance correlations 

FREEZ ERAN GE DW MWAVE DUMAG ED RYER DUMH 

DEHUM 0.10 0.06 0.20 0 . 16 0.03 0.02 0.08 

FREEZ 1 . 00 0.06 0 . 18 0 . 26 0.21 0.06 0 .10 

ERANGE 1.00 0.45 0 . 23 0.25 0.22 0 . 20 

DW 1. 00 0 . 48 0.46 0.33 0 . 22 

MWAVE 1. 00 0.29 -.01 0.08 

DU MAC 1 . 00 0. 14 0 . 16 

ED RYER 1. 00 0.23 

DUMH 1. 00 
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b. Food Freezers The electricity consumption of 

food freezers is generally modeled in engineering terms, and 

seldom approached by econometric methods. Engineering ther-

modynamics suggests that the electricity by freezers is re-

lated to infiltration (opening and closing), heat loss 

(insulation and surrounding air temperature), mechanical ef-

ficiency (age of unit), and the mass (weight) of goods 

frozen. 

The current study has no measure of unit age available, 

nor is information provided.about the surrounding air tem-

perature. Both infiltration and the mass of goods frozen 

would appear to be a function of household size. Other 

things equal, the more family members, the more likely the 

freezer to be opened. Additionally, the more family members , 

the greater the mass of food frozen. From the findings pre-

viously cited in this study , a differential effect will be 

allowed for adults and children . The model specification for 

food freezers is : 

USE 2 = b 20 + b 21Pa + b 22Y + b 23ADULTS 

+ b 24 CHILD + e 2 
where : USE2 = electricity consumption through freezers; 

ADULTS = number of adult members in household ; 

CHILD = number of child members in household . 

( 14) 
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c. Electric Ranges The principal determinants of 

electricity consumption through ranges are frequency and 

duration of range use. While this may be more of a be-

havioral relationship, reflecting household tastes and 

preferences, it is reasonable to hypothesize a relationship 

related to number of household members. Similar to Parti and 

Parti (1980) the model specification for electric ranges is : 

USE 3 = b 30 + b 31Pa + b 32Y + b 33ADULTS 

+ b34 CHILD + e 3 ; 

where USE3 is electricity consumption through ranges. 

( 15 ) 

d. Dishwashers The case for the electricity con-

sumption determinants of dishwashers is directly analogous to 

that of electric ranges . Thus , the model specification f o r 

dishwashers is ~ 

USE4 = b40 + b41Pa + b42 Y + b43ADULTS 

+ b44 CHILD + e 4 ; ( 16) 

where USE4 is electricity consumption through dishwashers. 

e . Microwave Ovens Again, consumption through 

microwave ovens is also determined by similar factors to 

electric range and dishwasher determinants. The model 

specification to be used for microwave ovens is : 

USE5 = b50 + b51 Pa + b52 Y + b53 ADULTS 

+ b54CHILD + e 5 ; ( 1 7 ) 
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where USE5 is electricity use through microwave ovens . 

f. Air Conditioners The appropriate specification 

of space conditioning models is more complex than that of 

many appliances. As discussed earlier in this chapter, a 

central factor determining usage through air conditioners is 

the weather-household size interaction . The specification of 

the air conditioner demand equation follows directly from the 

specification of the air conditioning determinant in the to-

tal household demand models . Thus , electricity use through 

air conditioners will be modeled as : 

where USE6 is electricity consumption through air 

conditioners . 

g. Electric Clothes Dryers The determinants of 

(18) 

electricity consumption through clothes dryers are identical 

to the determinants used for ranges, microwaves , and 

freezers. The specified demand equation for clothes drying 

is: 

USE7 ~ b 70 + b 71 Pa + b 72 Y + b 73ADULTS 

+ b 74 CHILD + e 1 ; (19) 

where USE7 is electricity consumption through clothes dryers. 
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h. Electric Space Heating Along with air condition-

ing, electric space heating has been discussed at length ear-

lier in this chapter. The principal determinants of space 

heat use are weather and dwelling size. The demand equation 

specified for space heating is : 

( 20) 

where USE8 is electricity consumption through spac e heating . 

i. Unspecified Appliances Conditional demand 

analysis requires that the appliances not directly specified 

by equation be modeled as a group . For this study , 

electricity use through clothes washing machines and televi-

sion sets were surveyed and not directly modeled . As the 

saturation of both applianc e groups is very high , and no 

other appliance were surveyed , no measure of appliance stock 

will be included in the unspecified appliance equation. 

This is in contrast to Parti and Parti ( 1980) where a 

count of unspecified appliances was included in their 

unspecified appliance equation . 

Conceptually, unspecified appliances incl ude hair 

dryers, stereos, televisions , computers, small electric kit-

chen appliances, and a host of others . Both the frequency 

and duration of use of these appliances is, in all 

likelihood, a function of relative lifestyle differences. 
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In a fashion similar to that used for total household 

demand models, the use through unspec ified appliances will be 

modeled as : 

( 21) 

where USE0 is electricity consumption through unspecified 

appliances. Notice that this is a very simple model and does 

not include measures of household size or composition. Due 

to the collinearity inherent in conditional demand models, 

the effects of children and adults are left relegated to 

those appliances which are expressly thought to be dependent 

on household size. This potential omitted variable bias may 

bias the estimated electricity use of common block (non-space 

heating) appliances. 

2 . Conditional Demand Models 

The observed electricity usage for this study is total 

household usage. In order to perform estimation using 

conditional demand analysis, the nine appliance models must 

be aggregated . The general form of the aggregation is : 

where : E =total household electricity use (observed) ; 

Ei = appliance specific electricity use. 

(22) 

Aggregating the eight appliance demand equations and the 

unspecified appliance equation formulated above: 
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E =boo+ bo1Pa + bo2Y + eo + Al(b10 + bllpa + b12Y 

+ e 1 ) + A2 (b20 + b 21 Pa + b22 Y + b 23 ADULTS 

+ b24CHILD + e2) + A3(b30 + b31pa + b32y 

+ b33ADULTS + b 34cHILD + e 3 ) + A4 (b40 + b 41 Pa 

+ b42 Y + b43 ADULTS + b44 CHILD + e4 ) 

+ A5 (b50 + b51Pa + b52 Y + b 53ADULTS + b54CHILD 

+ e 5 + A6 (b60 + b 61 Pa + b 62 Y + b 63 CDD*SQFT + e 6 ) 

+ A7 (b70 + b71 Pa + b72 Y + b 73 ADULTS 

+ b74CHILD + e7 + AB(bao + bBlpa + b82y 

(23) 

where A1 is 1 if the appliance is held by the jth household 

or O otherwise. 

Parti and Parti (1980) provides a discussion of the 

parameter constraints imposed prior to their estimation. 

They suggest that the high degree of correlation between the 

regressors (price, income, adults, child) will fail to 

provide identification of the appliance specific parameters. 

To correct for this assumed multicollinearity , Parti and 

Parti imposed numerous restrictions on the parameters of the 

"common block" appliances. Common block appliances are rela-

tively low electricity consumption appliances with identical 

demand equation determinant specification. 

Following the above outlined method, price, income, 

adults, and child effects will be constrained to be equal for 
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freezers, ranges, dishwashers, microwaves, and clothes 

dryers. Additionally, the price and income effects of 

dehumidifiers will also be constrained with the common block . 

The resultant reduced form equation is : 

E = boo + AlblO + A2b20 + A3b30 + A4b40 + A5b50 + A6b60 

+ A7b70 + A8b80 + bOlpa + b02y + (Al + A2 + A3 

+ A4 + A5 + A7)b1Pa + (Al + A2 + A3 + A4 + A5 

+ A7 )b2 Y + (A2 + A3 + A4 + A5 + A7 )b3ADULTS 

+ (A2 + A3 + A4 + A5 + A7 )b4CHILD + A6 (b61 Pa 

+ b62Y + b63 CDD*SQFT) + A8 (b81 Pa + b82 Y 

+ b83HOD*SQFT} + e . ( 24) 

As previously demonstrated, when equation (24) is es-

timated in conditional deviation form, the resulting inter-

cept terms provide direct estimates of the average 

electricity consumption per appliance. 
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IV. DATA 

The data used in this study were largely obtained from a 

major midwestern electric utility company. The data were 

collected as an extension of the utility's on-going electric 

load research activities as mandated by the Public Utilities 

Regulatory Policy Act (PURPA) . 

Sources utilized by the utility were telephone inter-

views conducted in the fall of 1982 and internal utility 

billing records. Additionally, the dataset has been aug-

mented with weather information and the Consumer Price Index , 

CPI (1967 = 100) . 

The utility-supplied data consisted of electricity 

usage, billing history, and various household- specific infor-

mation for 105 randomly selected residential households . 

Billing and electricity usage data were available for the 

period from November 1982 through November 1984. The time 

period of the data is particularly interesting as an ap-

proximately 26% rate increase occurred in October of 1983. 

This rate increase followed a period of relatively stable 

electricity rates. 

The dataset consists of the specific information for 

each household described in Table 4-1. These data were 

transformed and recoded for use throughout the study. Each 

recoded/ transformed variable in the study is described at the 

time it is introduced. 
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Table 4-1. Variable descriptions 

Variable 

USE 
BILL 
MP 
ID 
CITY 
DIV 

MEM 
AGE 
WEATHER 
YEAR 
NROOMS 
SQFT 

AC 
FURN 
DEHUM 
FREEZ 
RANGE 
DW 

DRYER 
INCOME 
CHILD 
TEMP 
MWAVE 
BWTV 

CTV 
WASH 
HOD 
COD 
CPI 
MONTH 
DU MG EN 

Description 

Electricity use by month 
Total cost of electricity 
Marginal price of electricity 
Case identification number 
City of customer electric service 
Company division 

Number of household members 
Categorical age of head of household 
Indication of weatherization activity 
Actual year structure was built 
Number of rooms in dwelling 
Square footage of dwelling 

Presence of air-conditioning 
Furnace fuel 
Presence of dehumidifier 
Presence of food freezer 
Presence of electric range 
Presence of dishwasher 

Presence of electric dryer 
Household income (1982) 
Number of children 
Average indoor air temperature 
Presence of microwave oven 
Presence of black and white television 

Presence of color television 
Presence of clothes washer 
65 degree heating degree days 
65 degree cooling degree days 
Consumer price index (1967=100) 
Month of data 
Indication of pre/post rate increase 

Coding 

(actual) 
(actual) 
(actual) 
(actual) 
(actual) 
(actual) 

(actual) 
(interval) 
(dummy) 
(actual) 
(actual) 
(actual) 

(dummy) 
(interval) 
(dummy) 
(dummy) 
(dummy) 
(dummy) 

(dummy) 
(interval) 
(actual} 
(actual) 
(dummy) 
(dummy) 

(dummy) 
(dummy) 
(actual) 
(actual) 
(actual) 
(actual) 
(dummy) 
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The means and standard deviations for each of the vari-

ables in the dataset are presented in Table 4-2. 

Information for furnace fuel type (FURN), nominal income 

(INCOME), and indoor air temperature (TEMP) was incomplete 

from the surveys. 

Furnace fuel type was easily completed from utility 

billing records. Each household's furnace fuel is identified 

by the household's electric utility rate code. 

Initially , 15 of the 105 households refused to provide 

income information. In the winter of 1987, an exit interview 

was conducted with many of the households to complete the 

missing data . Following the exit interview, 6 households 

still refused to identify their income level . An additional 

direct contact with the households was not attempted at the 

request of the uti l ity . 

In attempting to estimate income levels for these 

households, two relationships were examined. The regression 

coefficient of AGE (age of head of household) bore a negative 

relationship with income and had an R-Square of 4% . Visual 

inspection of a scatter plot also suggests that little 

relationship exists between AGE and INCOME. 

Physical house size (SQFT) was also examined, and 

provided an R- Square of 5% and a positive coefficient . As 

neither relationship had substantial explanatory power, and 

since the AGE relationship failed to display the expected 
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Table 4-2 . Descriptive statistics 

Variable Mean S.E. Mean N Label 

USE 1325 . 02 20 . 09 2520 KWH PER MONTH 
BILL 97.36 1. 30 2520 MONTHLY BILL 
MP .06 .00 2520 MARGINAL PRICE 
CITY 1. 64 .01 .2520 FRANCHISE FEE DUMMY 
DIV 2 . 14 . 03 2520 COMPANY LOCATION 
MEM 3.02 . 03 2520 HH MEMBERS 

AGE 2 . 75 .02 2520 AGE OF HEAD 
WEATHER . 39 . 01 2520 DUMMY FOR WEATHERIZATION 
YEAR 1953.36 . 53 2520 YEAR BUILT 
NROOMS 7 . 26 . 04 2520 NUMBER OF ROOMS 
SQFT 1839.76 17 . 09 2520 HH SQFT 
AC .90 .01 2520 AC DUMMY 

FURN .86 . 01 2232 FURNACE FUEL 
DEHUM . 48 .01 2520 DEHUMIDIFIER DUMMY 
FREEZ .59 .01 2520 FREEZER DUMMY 
ERANGE . 75 . 01 2520 ELEC RANGE DUMMY 
ow . 70 . 01 2520 DISHWASHER DUMMY 
DRYER 1. 22 . 01 2520 DRYER FUEL 

INCOME 29439 . 59 268.63 2376 NOMINAL INCOME 
CHILD 1.09 . 02 2520 NUMBER OF CHILDREN 
TEMP 75 . 06 . 10 1896 AVG INDOOR TEMP 
MWAVE . 62 . 01 2520 MICROWAVE DUMMY 
BWTV . 44 . 01 2520 DUMMY FOR BW TV 
CTV . 94 .00 2520 DUMMY FOR COLOR TV 

WASH . 95 . oo 2520 DUMMY FOR WASHER 
HDD 481.96 10 . 67 2520 65 HEAT DEGREE DAYS 
CDD 107 . 33 3 . 47 2520 65 COOLING DEGREE DAYS 
CPI 3 . 02 .oo 2520 CPI-U 1967 
MONTH 6.50 .07 2520 MONTH OF YEAR 
DUMGEN .50 .01 2520 GENERATION ADD DUMMY 
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positive relationship, the mean value of income was used for 

the 6 missing cases. 

To investigate the effect of the substitution of average 

income for missing values, several household electricity 

demand models were estimated excluding missing values. No 

significant changes in regression coefficient significance or 

magnitude were evidenced. 

The last variable with missing data, indoor air tempera-

ture (TEMP) , will not be used in this study. Because desired 

indoor air temperatures are not necessarily the same in every 

season, a single indoor air temperature measure is inap-

propriate. Additionally, an analysis of the TEMP variable 

revealed that some responses were apparently an average tem-

perature , while other responses were seasonal temperatures. 
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V. EMPIRICAL MODEL RESULTS AND DISCUSSION 

A. OLS Average Price Total Demand Models 

Initially, three models of household electricity demand 

were estimated using the average price of electricity . These 

models correspond to equations (1), (5), and (9) of Chapter 

III, and reflect winter, summer, and the transitional season, 

respectively . 

1. Winter Season 

All estimated coefficients in the winter season model 

are highly significant (1% level), with the exception of real 

income. In addition, real income bears a negative relation-

ship with electricity use . This result is not consistent . 
with theoretical expectations, or with previous studies . 

The own-price elasticity (evaluated at t he mea n ) is 

-0.74668. This elasticity is similar to those reported by 

Moore (1970) and Asher and Habermann (1978) . Both of the 

aforementioned studies utilized household level data and 

average price . 

The elasticities of adults and children on total 

electricity use are 0 . 20439 and 0 . 04756, respectively . This 

suggests that changes in the number of adults present has a 

markedly higher effect on electricity use than do changes in 

the number of children. This result has been previously 

demonstrated by Hirst, Goeltz, and Carney (1982). 

The effect of winter season weather varied substantially 
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between electrically heated and non-electrically heated 

homes. The SQFT*HDD (household size - heating degree day 

interaction) elasticity for electrically heated homes was 

1 . 15571, while non-electrically heated homes display an elas-

ticity of 0 . 17506. 

While most studies include some measure of weather in 

the demand model , few studies present weather elasticities . 

Those studies providing elasticities generally do not disag-

gregate electrically heated and non-electrically heated 

homes . As such, the elasticity reported in most studies 

would be an average and inapplicable to the current study . 

One study however , Hartman and Werth (1981) did disag-

gregate electric heat using a conditional demand methodology 

and state-level data . The study presents a HDD elasticity of 

0 . 88 for electrically heated homes . This compares favorably 

to the results of the present study . 

The final elasticity to examine is that of the appliance 

stock . The calculated elasticity is 0 . 35783 and is simi lar 

to the elasticity reported by Wilder and Willenborg (1975). 

Table 5-1 presents the results of the winter demand model es-

timation . 

2. Su.maer Season 

All estimated coefficients are significant at the 5% 

level, with the exceptions of price and income . Price is 

significant at the 10% level . Real household income, while 
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Table 5-1. Winter OLS AVP linear estimation 

Variable B SE B T Sig T 

ADULTS 144.70999 21.15020 6.842 . 0000 

APPL 116.87585 12 . 39391 9.430 .0000 

AVP -44429.71745 4460.25624 -9.961 .0000 

CHILD 59.92907 14 . 07305 4.258 .0000 

RINCOME -5 .01682E-03 4.06137E-03 -1 .235 .2170 

SQFTHDDl 9.882021E-04 2 . 37995E-05 41 . 522 . 0000 

SQFTHDD2 1 . 289808E-04 1 . 58967E-05 8 . 114 .0000 

(Constant) 926.37448 131.85845 7 . 026 . 0000 

R Square .76700 
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exhibiting the expected sign, fails to display significance 

at the 20% level. 

The own-price elasticity of -0.21969 is well bounded by 

the estimates of previous studies. This elasticity is also 

well below the price elasticity exhibited in the previous 

winter equation , suggesting that summer electricity usage is 

less price elastic than is winter usage. 

Because the price of electricity declines with increas-

ing electricity consumption in winter months, the winter own-

price elasticity may be overstated. This study will address 

this issue in later analyses. 

The elasticities of adults and children are 0.21792 and 

0 . 02996, respectively. These elasticities are very s i milar 

to those obtained in the winter season analysis . 

The summer season weather measure (household size and 

cooling degree day interaction) for homes with air condition-

ing yields an elasticity of 0.55710. Those homes without air 

conditioning are less sensitive to weather and home size, and 

exhibit an elasticity of 0.12586. When compared to Hartman 

and Werth (1981), the elasticity for air conditioned homes 

appears reasonable. The study does not provide an elasticity 

estimate for non-air conditioned homes. 

The elasticity estimate of the effects of the appliance 

stock is 0 . 35226 . This summer season elasticity is nearly 

identical to that estimated for the winter season . Table 5-2 
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Table 5-2. Summer OLS AVP linear estimation 

Variable B SE B T Sig T 

ADULTS 163.69430 27 . 71962 5 . 905 . 0000 

APPL 122 . 07406 15.64386 7 . 803 . 0000 

AVP -12268.77046 6801.82059 - 1.804 .0716 

CHILD 40 . 05273 18.42743 2 . 174 .0300 

RINCOME 3 . 241501E-03 5.39965E-03 . 600 . 5485 

SQFTCODl l . 299460E-03 5 . 12916E-05 2 5 . 335 . 0000 

SQFTCDD2 3.945904E-04 1 . 066BOE- 04 3 . 699 . 0002 

(Constant) 175 . 88728 204 . 87672 . 859 . 3909 

R Square .55227 
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displays the summer demand model estimation results. 

3. Transitional Season 

All estimated coefficients in the transitional season 

model are significant at the 1% level, with the exception of 

income which 1s significant at the 20% level. 

The estimated own-price elasticity for the months of the 

transitional season is -0.98566. This is somewhat higher 

than the own-price elasticity exhibited during the winter 

months, and may be overstated due to the decreasing block 

pricing in effect during the transitional months. 

The income elasticity of 0.08071 is well within the 

results of previous studies . The elasticities related to 

adults and children are 0.30644 and 0.06851, respectively. 

These are again very similar to those reported for the 

preceding two models. The appliance elasticity is 0.67164 

and is considerably higher than that derived from either of 

the two preceding models. The estimation results are 

presented in Table 5-3. 

<&. Discussion 

The relative explanatory power of the models decreases 

substantially from winter to summe~ season (R-squares of 

0.76700 and 0.55227, respectively). This reduction in 

R-square from winter to summer is largely related to the 

greater explanatory power of winter weather over summer 

weather. The two SQFTHDD terms in the winter model account 
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Table 5-3. Transitional OLS AVP linear estimation 

Variable B SE B T Sig T 

ADULTS 148.99242 28.73872 5.184 . 0000 

APPL 150.64939 15.85583 9 . 501 . 0000 

AVP -38597.75560 7433.29541 -5 . 193 . 0000 

CHILD 59 . 29107 19. 16702 3.093 . 0021 

RINCOME 7.549329E-03 5.49046E-03 1.375 .1699 

(Constant) 793.57561 214 . 15807 3 . 706 . 0002 

R Square . 37257 
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for over 0.61 of the model R-square . The corresponding terms 

in the summer model account for only 0 . 45 of the model's 

R-square. Thus, winter weather provides a greater explana-

tion of the variability of electricity use than does summer 

weather . 

The transitional season model provides the least ex-

planatory power with an R-square of 0 . 37257 . The nature of 

the weather effect terms in the winter and summer models 

(weather - household square footage) may provide some ex-

planatory power related to household size, a measure totally 

lacking in the transitional season model. Therefore, the ad -

dition of a size term (SQFT) to the transitional season model 

may help the explanatory power and make the model more com-

parable with the summer and winter models. The results of 

this estimation are presented in Table 5-4. 

The R-square of the transitional season model containing 

a SQFT term increased to 0.43299, and SQFT is significant at 

the 1% level . This provides an elasticity of 0 . 31920 as-

sociated with household s i ze . Other elasticities calculated 

from this model are: own-price (-1.02427), adults (0.27330) , 

children (0.05964), and appliance stock (0 . 61850) . All es-

timated coefficients are significant at the 1% level, except 

income, which fails significance at the 20% level but does 

achieve a positive sign . 
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Table 5-4. Alternative transitional OLS AVP linear 
estimation 

Variable B SE B T Sig T 

ADULTS 132 . 88014 27.46061 4 . 839 .0000 

APPL 138.73131 15.19784 9.128 .0000 

AVP -41853 . 55343 7091.87609 -5.902 .0000 

CHILD 51.60806 18.27954 2.823 .0050 

RINCOME 2.827503E-03 5.27397E-03 .536 .5922 

SQFT . 16306 . 02458 6.634 .0000 

(Constant) 707.49446 204 . 24433 3.464 . 0006 

R Square .43299 
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This demonstrated relationship between household size 

and electricity use, in the absence of weather, suggests that 

the winter and summer weather terms may overestimate actual 

weather sensitivity by failing to exclude changes in 

electricity usage primarily related to dwelling size. The 

interpretation of the dwelling size measure in the equation 

is, in all likelihood, a secondary measure of the appliance 

stock. 

All three seasons share similarity in appliance stock, 

number of adults , and number of children coefficient es-

timates. The marginal effect of an additional adult is ap-

proximately 150 kWh per month, other things equal . The mar -

ginal effects of an additional appliance is approximately 120 

kWh per month. The marginal effect of one additional chi ld 

is approximately 60 kWh per month. This suggests that the 

pooling of all months, allowing for differential price and 

weather effects will be appropriate and more efficient than 

three separate estimations . The estimated coefficients f o r 

the above factors are not significantly different by season 

at the 5% level . 

The pooled model provides substantially the same results 

presented in the three individual models. All estimated 

coefficients are significant at the 1% level, except for sum-

mer average price (10% level), real i ncome , and the transi -

tional season dummy. The pooled model estimation results are 
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presented in Table 5-5 . 

Winter and transitional season estimated coefficients 

are nearly identical and provide similar own-price elas-

ticities (-0 . 75036 and -0.78298, respectively). Summer own-

price elasticity is -0.22022, slightly larger than reported 

for the summer model. Other elasticities are substantially 

unchanged from the separate models . 

Overall, the pooled model provides increased efficiency 

without imposing any undesirable restrictions. The number of 

individual parameters estimated could be further reduced by 

combining winter and transitional price into "non-summer" 

average price, as winter and transitional season coefficients 

are not significantly different at the 5% level. 

The relative lack of significance of household income in 

the above models may result from several factors . For ex-

ample, income is a determinant in not only the utilization of 

the appliance stock, but also in the level of the appliance 

stock. Thus, an appliance stock equation may help reveal the 

true effect of income on electricity usage. 

Another possible explanation centers around the measure 

of income used in this and other studies . Consumption deci-

sions may not be based on current income, but rather on ex-

pected or permanent income . Therefore, a measure of 

household wealth may provide a superior explanatory measure. 
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Table 5-5. Pooled OLS AVP linear estimation 

Variable B SE B T Sig T 

ADULTS 152.06513 14.83779 10.249 .0000 

APPL 125 . 16254 8 . 49359 14.736 . 0000 

AVPST -12298 . 37387 6302 .24751 -1 . 951 . 0511 

AVPTT - 43445.55184 9143.06041 -4.752 . 0000 

AVPWT -43004.05820 4372 .33296 -9 . 835 .0000 

CHILD 53 . 22613 9.87 572 5.390 .0000 

RINCOME -1 . 20874E-04 2 . 85991E- 03 -.042 .9663 

SQFTCDDl 1.302353E-03 4 . 68781E-05 27 . 782 . 0000 

SQFTCDD2 3.900515E-04 9.61225E- 05 4.058 . 0001 

SQFTHDDl 9.781303&-04 2.29754E-05 42.573 . 0000 

SQFTHDD2 1 . 241753E-04 1.56006E-05 7.960 . 0000 

SUMMER -609 . 22570 198.42454 -3 .070 . 00 22 

TRANS 278 . 97938 240 . 58996 1.160 . 2463 

(Constant) 813 . 82139 117 . 44866 6.929 . 0000 

R Square . 69743 
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B. OLS Marginal Price Total Demand Models 

In order to investigate the use of marginal price in 

place of average price, the above equations (equations (1), 

(5), and (9) of Chapter III) were re-estimated using the real 

marginal price of electricity as the price measure . 

Overall, both estimated coefficients and explanatory 

power are very similar to the average price estimations . 

This result was reasonably expected, as the utility tariff 

provides only one declining block structure in its rates (a 

two-part tariff), and average prices are necessarily similar 

to marginal prices . 

Also, only all-electric households, those with electric 

heat, purchase electricity from the two block rate schedule 

(non-summer only). All c onsumers in the sample purchase pay 

a fixed monthly service charge, and state and local taxes 

(where applicable). 

Appendix A provides the detailed results of the marginal 

pr i ce model estimations . 

C. 2SLS Average Price Total Demand Models 

The two-stage least squares models utilize equations (1) 

and (2) , (5) and (6), and (9) and (10) of Chapter III. This 

method is used to estimate a price function, and purge the 

price variable, average price, of c orrelation with the 

residuals in the demand equations . The 2SLS models are es -

timated for the winter, summer, and transitional seasons. 
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Because no multi-block pricing occurs in the summer 

months, it is unlikely that the 2SLS estimation should have 

any significant effect on the summer model. During the tran-

sitional and winter seasons, average price and energy use are 

inherently negatively related due to the two-part tariff 

faced by electrically heated households. Thus, the litera-

ture suggests that own-price elasticities for these seasons 

should be lessened using the 2SLS method. 

For computational ease on a microcomputer, 2SLS estima-

tions are prepared using two passes of OLS . Appendix B 

provides the results of the first stage price instrument es-

timation for winter, summer, and the transitional season. In 

general, the R-square values for the models approximately 

0 . 60 for the winter and summer seasons, and 0.40 for the 

transitional season . 

Appendix C provides the estimations of the formulated 

price models, equations (2), (6), and (10) of Chapter III. 

R-square values are similar to those reported above, and most 

coefficient estimates are significant at the 1% level. Addi-

tionally, all parameter estimates are of the expected sign: 

rate increase dummy > 0, franchise fee dummy > 0, preferen-

tial electric heating rate dummy < 0, electricity use > o. 
The second stage of the 2SLS models entailed estimating 

equations (1), (5), and (9) of Chapter III using the pre-

dicted values of the average price from the first stage. The 
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detailed results of these three estimations are presented in 

Appendix D. The explanatory power of these models is very 

similar to that of the OLS estimations using average price. 

The principal finding of the 2SLS estimation is the 

marked decrease in winter season own-price elasticity . The 

elasticity estimate fell from -0 . 74668 (OLS) to -0.14224 

(2SLS). A slight increase in elastic i ties is seen for both 

the summer and transitional periods. All other elasticities 

remained very stable throughout the OLS average price, mar-

ginal price, and 2SLS estimations. 

D. OLS Average Price Total Demand Models 
in Double Log Specitication 

Equations (3), (7), and (11) of Chapter III were es-• 
timated using OLS. The resulting regression coefficients are 

interpreted as constant elasticities . 

1. Winter Season 

All estimated coefficients in the winter season model 

are significant at the 1% level and of the previously dis-

cussed expected sign , with the exception of real income. The 

displayed price elasticity is -0.79389 , very similar to the 

-0.74668 calculated from the linear specification. The in-

come elasticity is 0.02056 and significant at the 35% level. 

It is similar to that estimated by Garbacz {1983) and some-

what lower than the results reported by Acton, Mitche l l, and 

Sohlberg (1980) . Both studies utilized some form of 
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disaggregate data. 

The estimated coefficients (and elasticities) for the 

effects of adults and children are 0 . 29973 and 0 . 01745, 

respectively. These elasticities are very similar to those 

from the linear specification described above. The appliance 

stock elasticity of 0.07730 is lower than that calculated 

from the linear specif ication. 

The weather measure elasticities for electrically heated 

and non-electrically heated homes are 0.44273 and 0 . 37350, 

respectively. These are again substantially different than 

those obtained using the linear specification . Electrically 

heated homes under the prior model displayed an elastic 

relationship with household electricity use (elasticity of 

1.15571). The assumption of constant elasticity inherent in 

the double log specification may account for the large dif-

ferences in estimated elasticities . 

The results of the winter season double log estimation 

are presented in Table 5-6 . 

2. Sumaer Season 

All summer season model coefficients are significant at 

approximately the 10% level or better , with the notable ex-

ception of the appliance stock measure. The appliance stock 

measure displays the appropriate positive relationship, but 

fails to achieve significance at the 50% level. Addi -

tionally, the appliance stock elasticity is extremely small, 
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Table 5-6 . Winter OLS AVP double log estimation 

Variable B SE B T Sig T 

ADULTS .29973 . 03447 8.695 .0000 

APPL . 07730 . 01110 6 . 964 . 0000 

AVP - . 79389 .07600 -10.445 .0000 

CHILD . 01745 2.48520E-03 7 . 022 . 0000 

RINCOME .02056 . 02100 . 979 .3277 

SQFTHDDl . 44273 . 02188 20 . 234 . 0000 

SQFTHDD2 . 37350 . 02166 17.244 .0000 

(Constant) -2 . 12407 . 44148 - 4.81 1 . 0000 

R Square . 72595 
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less than 0.01. One possible explanation for this result is 

that space conditioning accounts for a major part of the 

variability in summer season electricity usage, and appliance 

stock effects may be subsumed into the cooling degree day -

square footage terms of the model. 

Price elasticity is -0.21900, very similar to that 

reported earlier . The income elasticity is 0.07819, well 

within the findings of other studies. The elasticities of 

adults and children are also similar to previous findings in 

this study. 

Similar to the winter season findings, the summer season 

weather measure variables provide much different elasticity 

estimates in the double log specification. Air conditioned 

households' weather elasticity is 0 . 40583 , approximately two-

thirds of that displayed in previous models. Elasticity for 

non-air conditioned homes is 0.36284, or three times that 

displayed in the linear specification. 

Table 5-7 provides the regression results for the summer 

season model. 

3 . Transitional Season 

The double log specification results for the transi-

tional season are very similar to the results previously 

described for the linear specification. All estimated coef -

ficients are significant at the 1% level, and most constant 

elasticities are very similar to those previously described. 
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Table 5- 7 . Summer OLS AVP double log estimation 

Variable B SE B T Sig T 

ADULTS . 29559 .04834 6 . 115 .0000 

APPL 7.282426E-03 .01602 .455 .6495 

AVP -.21900 .13959 -1 . 569 .1171 

CHILD 6 . 606817E-03 3.49445E-03 1 . 891 . 0590 

RINCOME .07819 . 03011 2.597 .0096 

SQFTCDDl . 40583 . 02373 17 . 103 .0000 

SQFTCDD2 . 36284 .02427 14 . 953 . 0000 

(Constant) .22274 . 64637 . 345 . 7305 

R Square .47111 
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Own-price elasticity is -1.40336, indicating an elastic 

response to price changes, as compared to a near unit elastic 

response under the previous average price specifications. 

Income elasticity is 0.12724, still rather inelastic. 

Elasticities for the adults and children measures are 

similar to those previous results also. The appliance 

measure elasticity is 0.13750 . This result is lower than 

previously reported for the transitional season, but similar 

to the double log results for summer and winter seasons . The 

results of this estimation are presented in Table 5-8. 

4 . Discussion 

As with the results previously discussed for average 

price models, the explanatory power of the models decreases 

from winter to the transitional season. The R-squares for 

the winter, summer, and transitional season models are 

0.72595, 0.4711 , and 0 . 33441, respectively . 

Own-price elasticities in the double log specification 

are very similar in magnitude to those reported from the 

linear specifications . Additionally, the differential ef-

fects of adults and children on electricity consumption also 

share a similar pattern with previous findings. 

In an attempt to improve the explanatory power of the 

transitional season model a household size measure (SQFT) was 

added and the model was re-estimated. The R-square increases 

to 0.38658, and all coefficients are significant at the 
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Table 5-8 . Transitional OLS AVP double log 
estimation 

Variable B SE B T Sig T 

ADULTS . 35433 . 07439 4.763 .0000 

APPL .13750 . 02390 5 . 752 . 0000 

AVP -1 . 40336 .20368 -6 . 890 . 0000 

CHILD . 01972 5.42258E-03 3 . 636 . 0003 

RINCOME . 12724 . 04556 2 . 793 . 0055 

(Constant) - . 06282 . 82494 - .076 . 9393 

R Square . 3344 1 
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5% level. The elasticity for household size is 0.34511 and 

is similar to the weather variable elasticities reported for 

summer and winter seasons . Table 5-9 presents the results of 

this regression. 

This result suggests that the multiplicative nature of a 

linear in logarithms specification may require a different 

weather measure than that used in the previous linear models. 

By including both household size (SQFT) and weather measures 

(CDD or HDD), the usage effect of weather and household size 

on electricity consumption may be better captured . 

Preliminary winter season model estimations provide a 

household size elasticity of 0.41449 with HDD elasticities of 

0.45813 and 0.31365 for electrically heated and non-

electrically heated homes. Summer results show a SQFT elas-

ticity of 0.49500 with CDD elasticities of 0.35992 and 

0 . 26719 for air conditioned and non-air conditioned homes. 

Winter and summer season estimation results are presented in 

Tables 5-10 and 5-11, respectively . 
\ 

B. OLS Marginal Price Total Deaand Models 
in Double Log Specification 

As reported for the linear specification models , the use 

of marginal price impacts little change on the estimated 

equations or elasticities . In general, all elasticities and 

estimated coefficient significance levels remain relatively 

unchanged by use of marginal price. One noted exception is 
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Table 5-9. Alternative transitional OLS AVP double 
log estimation 

Variable B SE B T Sig T 

ADULTS .27089 . 07 288 3 . 717 .000 2 

APPL . 11256 . 02336 4.819 . 0000 

AVP -1.46118 .19602 - 7 . 454 . 0000 

CHILD . 01764 5.22386E-03 3 . 376 .0008 

RINCOME .10022 . 04402 2 . 277 . 0233 

SQFT . 34511 . 05824 5. 9 2 6 . 0000 

(Constant) -2 . 52197 . 89494 -2 . 818 .0051 

R Square . 38658 
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Table 5-10. Alternative winter OLS AVP double log 
estimation 

Variable B SE B T Sig T 

ADULTS . 29521 . 03473 8.501 .0000 

APPL .07554 . 01121 6.741 . 0000 

AVP -.79312 . 07685 -10.321 . 0000 

CHILD . 01715 2 . 49423E-03 6.876 . 0000 

HDDl . 45813 . 03415 13.415 . 0000 

HDD2 . 31365 . 03443 9.111 .0000 

RINCOME . 01830 . 02108 .868 . 3854 

SQFT . 41449 . 02815 14 . 722 . 0000 

(Constant) -1 . 99446 . 45487 -4.385 . 0000 

R Square . 72510 
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Table 5-11 . Alternative summer OLS AVP double log 
estimation 

Variable B SE B T Sig T 

ADULTS .27208 .04886 5.569 .0000 

APPL 1.467835E-03 .01614 . 091 . 9276 

AVP -.24306 . 13957 -1.741 .0820 

CDDl . 35992 . 02990 12 . 039 .0000 

CDD2 .26719 .03075 8.690 .0000 

CHILD 5.992349E-03 3.49812E-03 1 . 7 13 .0871 

RINCOME .07737 . 03010 2 . 570 .0103 

SQFT .49500 .03950 12 . 533 .0000 

(Constant) - . 24595 . 65823 - .374 .7088 

R Square . 47222 
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the somewhat smaller magnitude (absolute value) of price 

elasticities using the marginal price variable. Elasticity 

estimates are reduced by 10 to 20% over those reported in the 

average price estimations . 

Model results for the marginal price estimations appear 

in Appendix E . 

F. 2SLS Average Price Total Demand Models 
in Double Log Specification 

The results of the two- stage least squares regressions 

for the double log specifications closely resemble the 

results of the 2SLS runs for the linear specifications . The 

winter 2SLS regression provided a significantly reduced price 

elasticity of -0.13718, compared to ~he OLS elasticity of 

-0 . 79389. This result was also observed from the 2SLS es-

timation under the linear specification . Again, all other 

estimated elasticities remained generally unchanged. 

Table 5-12 presents the results of the winter season estima-

tion. 

The summer season model provides a slightly greater 

price elasticity than reported by OLS (-0.24182 versus 

-0 . 21900), however these are not significantly different at 

the 5% level . All other estimated coefficients were nearly 

identical to the OLS estimations . Summer season estimation 

results appear in Table 5-13. 
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Table 5-12. Winter 2SLS AVP double log estimation 

Variable B SE B T Sig T 

ADULTS .32591 .03609 9.031 . 0000 

APHATW -.13718 .11733 -1.169 .2426 

APPL . 08032 . 01157 6.940 . 0000 

CHILD .01681 2 . 59121E-03 6.487 .0000 

RINCOME . 04330 .02209 1. 960 .0502 

SQFTHDDl .43809 .02281 19 . 207 .0000 

SQFTHDD2 .35847 . 02266 15.820 .0000 

(Constant) .29686 . 55992 . 530 . 5961 

R Square . 70240 
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Table 5-13. Summer 2SLS AVP double log estimation 

Variable B SE B T Sig T 

ADULTS .29531 .04838 6.104 . 0000 

APHATS -.24182 .18061 -1. 339 . 1810 

APPL 7.3482488-03 .01603 . 459 . 6467 

CHILD 6 . 596777E-03 3.49622E-03 1.887 . 0595 

RINCOME .07798 . 03014 2 . 587 . 0098 

SQFTCDDl .40597 .02375 17 . 094 . 0000 

SQFTCDD2 . 36302 . 02429 14 . 944 . 0000 

(Constant) . 13965 . 76950 . 181 . 8560 

R Square . 47068 
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Results for the transitional season 2SLS model were also 

very similar to its linear counterpart. All estimated coef-

ficients were similar in significance and magnitude to the 

OLS regression results. Table 5-14 displays the results of 

the transitional season estimation. 

G. Alternative Appliance Stock Measure 

The alternative, weighted by usage appliance stock 

measure, APPLl, was used to estimate OLS average price, mar-

ginal price, and 2SLS models. No significant changes were 

observed in estimated model coefficients. This suggests that 

the simple sum appliance measure is equally as useful as the 

weighted average measure. Model results are not presented, 

and are available from the author . 

H. Conditional Demand Models 

Two conditional demand models are estimated, both of the 

form of equation (24) of Chapter III. The first model to be 

discussed uses real average price as the price measure, while 

the second utilizes the real marginal price of electricity. 

Of the four price measures included in the model 

(electric spaceheat, air conditioning, common effect ap-

pliances, and residual usage), three are negative. The price 

term for winter space heating and common effect appliances 

achieve significance at the 20% level . The associated own-

price elasticities, as well as all other estimated elas-

ticities, will be discussed in the following section. 
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Table 5-14. Transitional 2SLS AVP double log 
estimation 

Variable B SE B T Sig T 

ADULTS .35503 . 07706 4 . 607 . 0000 

APHATT -1 . 36478 . 32590 -4 . 188 . 0000 

APPL .13780 . 02480 5.557 .0000 

CHILD . 01978 5.62225E-03 3.518 . 0005 

RINCOME . 12809 . 04743 2.701 .0072 

(Constant) . 07366 1 . 22531 . 060 .9521 

R Square . 28824 
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Three of the four estimated income coefficients are 

positive, with the positive coefficients failing significance 

at the 20% level. Only the negatively signed income term as-

sociated with winter space heating achieved significance. 

The negative sign of this coefficient is not as hypothesized 

from consumer theory or previous studies. 

Both weather measures, summer season and winter season, 

are highly significant and positively related to electricity 

use. In addition, common block coefficients for children and 

adults are positive and highly significant. 

The constant terms, representing appliance equation in-

tercept terms, are in general significant at the 5% level. 

In the following section dealing with the conditional devia-

tion specification of the model, appliance constant mag-

nitudes will be evaluated . The results of the average price 

conditional demand estimation appear in Table 5-15 . 

Results for the conditional demand equation estimated 

using the real marginal price measure are largely the same as 

reported above. Appendix G presents the results of this es-

timation . 

I. Conditional Demand Models 
in Deviation Pora 

As demonstrated in Chapter III, when the conditional 

demand equation is estimated in conditional deviation form, 

the resulting appliance intercept terms are interpreted as 
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Table 5 -1 5. AVP conditional demand estimation 

Variable B SE B T Sig T 

A6CDD 1.329589E-03 4.85350E-05 27.394 .0000 
A6P -3306.41651 8153 . 87433 -.406 .6851 
A6Y 1.659526E-04 6 . 30488E-03 .026 .9790 
A8HDD 8 . 455454E-04 3.19211E-05 26.489 .0000 
ASP -103891.0590 9088.22314 -11.431 .0000 
A8Y - . 02659 7.53306E-03 -3 . 529 .0004 
AVP 858.34905 7063.18285 .122 .9033 
COMlAD 51.14709 3.57639 14.301 .0000 
COMlAVP -2862.12477 1830.60460 -1.563 .1181 
COM1CH 14.56248 2.50751 5 . 808 .0000 
COM1Y 1.218658E-03 l.59827E-03 .762 .4458 
DEHUM -205.46137 54.14181 -3.795 .0002 
DUMA CS - 111.99249 230.64340 - .486 .6273 
DUMHW 2527 . 82305 232.43300 10 . 875 . 0000 
ow 55.22934 61 . 46083 . 899 .3689 
ED RYER 127.23563 56.08006 2.269 .023 4 
ERAN GE -99.83787 55.36113 -1.803 .0714 
FREEZ 43.11140 55.11828 .782 . 4342 
MWAVE 218.35353 55.74216 3.917 .0001 
RINCOME 5.968073E-03 6.24042E-03 .956 . 3390 
SUMMER 111.18532 49 . 27309 2.257 .0241 
TRANS 87.39236 32.54526 2.685 . 0073 
(Constant) 440.99942 193.24650 2.282 . 0226 
R Square .72108 
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average appliance electricity usage. Both average price and 

marginal price models are re-estimated in conditional devia-

tion form. 

1 . Estimated Appliance Electricity Use 

Of primary interest in the conditional demand model in 

deviation form are the estimated unit energy consumptions 

(UECs) of the various specified appliance . These estimated 

UECs appear in Table 5-1 6 . 

Estimated UECs from the average price and marginal price 

specifications are very similar, with the exception of winter 

season space heating estimates . Using a marginal price 

measure substantially reduces the estimated electricity use 

by space heating . 

The average electricity use through dehumidifiers and 

electric ranges is negative , suggesting that the model suf-

fers from omitted variable bias or specification error. 

While published estimates of dehumidifier usage are not 

available , a range of 50 to 200 kWh per month is suggested by 

engineering methods . Parti and Parti (1980) reports es-

timated electric range use of 60 kWh per month. Because both 

appliances represent a small share of total household 

electricity usage (3-5%), it is not surprising that isolating 

their UECs is difficult . Many studies in the field 

hypothesize that conditional demand analysis best estimates 

the UECs of larger electricity using appliances. 
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Table 5-16. Estimated appliance us ages 

APPLIANCE AVP MP 

AIR CONDITIONING 630.7709 665.6957 

CLOTHES DRYERS 211 . 9511 203.4252 

COOKING RANGES -59.9930 - 50.0671 

DEHUMIDIFIERS - 105 . 333 -109 . 979 

DISHWASHERS 59 . 35568 53 . 97865 

ELECTRIC HEATING 1554 . 857 1156.837 

FREEZERS 122 . 7518 118 . 5025 

MICROWAVE OVENS 286 . 5973 278.9768 

RESIDUAL USE 576 . 0204 613 . 7649 
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The estimated UEC for dishwashers in this study is ap-

proximately 3 kWh per day. Because dishwashers are a luxury 

good, they may serve as a proxy for an array of other ap-

pliances, and thus bias the UEC upward. In a 1979 study, the 

Midwest Research Institute (MRI) reports a metered estimate 

of the dishwasher UEC of 0.41 kWh per day. 

MRI reports a UEC for electric clothes drying of 2.83 

kWh per day, while this study finds the UEC to be in excess 

of 6 kWh per day. While the current study is substantially 

higher, the MRI study is based on a national sample . Thus, 

the differing temperatures and humidity of Iowa may require a 

greater drying time and electricity consumption for clothes 

dryers. 

The estimated UEC of food freezers in the current study 

is slightly over 3 kWh per day . This compares very favorably 

with MRis estimate of 3.68 kWh per day. 

As with dishwashers, microwave ovens may be considered a 

luxury good, and thus be a proxy for other electricity using 

appliances. This study finds a UEC of over 9 kWh per day for 

microwave ovens . Assuming a 1 kW microwave oven in use for 1 

hour per day, a maximum UEC of 1 kWh per day is expected. 

The present study estimate is clearly biased upward. 

The estimated UEC for summer air conditioning use is 

slightly over 20 kWh per day in the current study. This is 

approximately twice that estimated by MRI. Due to the 
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unusually hot summer of 1983 (included in the present 

sample), and the more humid Iowa climate, the estimated UEC 

seems reasonable. 

With the exception of the UEC for electric space heat, 

the average price and marginal price specifications agree 

closely. However, the space heating UEC ranges from over 50 

kWh per day (average price model) to slightly under 40 kWh 

per day (marginal price model). One reason for this dis-

crepancy is the greater degree of simultaneity between 

average price and electricity use . Thus, the average price 

based estimate may be biased upwards. Utility records indi-

cate that electrically heated houses use from 1200 to 1600 

additional kWh per month than do non-electrically heated 

homes in the winter. While this usage may not be enti rely 

attributable to electri c heating, it does suggest that the 

estimated UECs from this study are reasonable. 

Appendix H provides the details of the conditional 

demand estimations in deviation form. 

2. Estimated Elasticities 

Table 5-17 presents selected elasticities from the con-

ditional demand models. These elasticities are calculated at 

the conditional mean of the independent variables, and util-

ize the estimated appliance UECs when the estimated UECs are 

non-negative . Results are reported for both average and mar-

ginal price based models . 
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Table 5-17. Estimated elasticities 

PRICE MP 

AIR CONDITIONING 0 . 075073 

CLOTHES DRYERS - 0 . 12539 

COOKING RANGES 0 . 525405 

ELECTRIC HEATING -0 . 78019 

FREEZERS -0 . 22389 

MICROWAVE OVENS - 0 . 09482 

RESIDUAL - 0 . 71 023 

INCOME 

AIR CONDITIONING 0 . 001880 

CLOTHES DRYERS 0.086095 

COOKING RANGES - 0 . 35986 

ELECTRIC HEATING -0.05122 

FREEZERS 0 . 147962 

MICROWAVE OVENS 0 . 067641 

RESIDUAL 0 . 075765 

WEATHER 

AIR CONDITIONING 1.230986 

ELECTRIC HEATING 1 . 1443 42 

AVP 

-0.13772 

-0.31755 

1.148431 

-1.32548 

-0 . 56028 

-0.23947 

0 . 036231 

0 . 002818 

0 . 060155 

- 0 . 21863 

-0 . 19057 

0.103986 

0.047933 

0 . 104102 

1.312157 

0 . 870386 



www.manaraa.com

95 

The overall price and income elasticities are calculated 

as the consumption-weighted summation of the individual ap-

pliance elasticities . Using the marginal price measure of 

electricity price, the calculated winter price elasticity is 

-0.62171, while the summer price elasticity is -0.26811. For 

the corresponding average price based model, winter own-price 

elasticity is -0 . 85940, and summer own-price elasticity is 

-0 . 19207. These own-price elasticities are very similar to 

those obtained using the total household electricity demand 

methodology . 

The estimated income elasticity for the marginal price 

based models is 0.025 for winter and 0 . 065 for summer months. 

Using the average price based models, winter income elas-

ticity is -0.060 and summer elasticity is 0.065 . These elas-

ticities, including the improbable negative relationship, are 

again similar to those estimated using the total demand 

models. 

3. Discussion 

The results of the conditional demand estimations sug-

gest that bias from omitted variables may be substantial. 

The nonsensical, negative UECs and the overestimated UECs 

provide evidence of the need for more complete inventories of 

household appliances. 

Specification error may also have a role in the results 

of the conditional demand estimations . The common effect 
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appliances (dishwashers, electric ranges, microwave ovens, 

clothes dryers, food freezers, and dehumidifiers) were all 

constrained to have the same price, income, and household 

size effects . It is reasonable to assume that if the assump-

tion of identical effects is incorrect, the resulting es-

timates will be biased. 

The most likely incorrect constraint on the common ef-

fect appliances is that of identical use effects by children 

and adults . In order to investigate this hypothesis, the 

deviation form equations were re-estimated omitting the com-

mon effect interaction wi th children and adults. Since this 

may impose an additional bias due to the omitted variables, 

the results will not be entirely conclusive. 

The estimation shows no substantial change in the es-

timated coefficient UECs , and supports the inference that 

model specification error (due to the constrained adults and 

children effects) is not substantial for the common effect 

appliances. Appendix I reports the estimated models. 
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VI. MODEL ANALYSES AND APPLICATIONS 

This chapter focuses on two major issues: inspec tion of 

the statistical properties of selected models and applying 

the estimated models to specific public utility and PUC con-

cerns . 

A. Model Parameter Stability 

Because of the pooled (cross sectional , time series ) na-

ture of the data used in this study, an examination of the 

applicability of the pooling is desired. Specifically, the 

investigation centers on whether or not the model parameters 

are the same for both years of sample data. The Chow test 

for stability is utilized to test this hypothesis for each 

seasonal model . 

The 2SLS models are deemed to be theoretically superior 

to the single equation models , based both on the literature 

and the estimated model parameters . The stability test will 

be conducted on the three seasonal 2SLS demand models in the 

linear specification. Due to extreme multicollinearity the 

double log models are not tested. 

The first stage price models are also not tested, as the 

underlying price mechanism is known to have changed at the 

end of the first year of the sample data. The price models 

are constructed to account for the pri ce increase in the 

utility tariff . The resulting parameter stability tests are 

conditional on the assumption of price parameter stability . 
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The Chow test F-values for winter, summer, and transi-

tional season linear models are 1 . 56 (7 , 1246), 1.54 (7,825), 

and 3 . 17 (5 , 410), respectively . The transitional season F-

value suggests a very significant difference in the 

parameters from the first sample year to the second. The 

summer and winter season F-values suggest less strongly 

(significant at the 15% level) that those seasonal model 

parameters are also different between sample years. 

Because the transitional season model has the lowest ex-

planatory power and fewest parameters, i t is possible that 

one or more omitted variables may explain differences between 

years. None of the differential slope terms in the transi-

tional model are significant at the 20% level. However, the 

differential intercept suggests that the overall level of 

electricity usage changed by approximately 300 kWh between 

estimation years . 

Closer examination of the differential slopes of the 

winter estimation reveals that weather effects are less in 

the second year of the data. Additionally, the effect of 

adults on electricity consumption is also lower in the second 

year . 

tion. 

These results are also observed for the summer estima-

This may suggest that weather effects require a more 

thorough modeling treatment, such as the use of explicit tem-

perature measures and a more complex weather activity 

specification. 
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While model stability appears to be questionable, the 

magnitude of the instability is relatively low. For example, 

the slopes of the estimated weather effects vary by only 10-

20% between sample years. The reduction in electricity use 

by adults is approximately 75 kWh per month per adult, or 

less than 10% of total electricity use. 

B. Backcasting 

To investigate the predictive ability of the estimated 

total demand models, each model will be used to predict his-

toric electricity consumption within the sample period . Be-

cause utility and PUC forecasts are made by consumer class 

(residential, commercial, industrial, etc . ) the mean pre-

dicted values will be examined . Individual, household-level 

forecasts are generally not of interest. 

For each of the 24 sample months, the predicted consump-

tion was calculated for average price, marginal price, and 

2SLS based linear and double log models . Each model's back-

casts were evaluated by squaring and summing the monthly 

deviations from actual usage. 

The model with the best predictive ability using the 

above criterion is the 2SLS model in linear specification. 

This model's backcast deviation from actual usage is 41% of 

the next best backcasting model, the average price based 

model in linear form. All linear models out perform their 

double log counterparts by at least a factor of 2, compared 
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by this squared deviation method . Figures 6-1, 6-2, and 6-3 

present backcast plots of the linear, log, and 2SLS models. 

c. Weather Normalization 

Utility rate-making is a c omplex and cost- based process . 

One of the crucial steps in calculating prospective utility 

rates involves distributing historical utility costs across 

historical electricity sales (Iowa methodology). Because 

sales vary substantially with weather, weather normalization 

is used to remove the changes in elec tricity use due t o 

weather . 

Many methods are used to accomplish this end, however 

few are model - based . Most involve determining weather sensi-

tive sales, and multiplying by a ratio of normal degree days 

to observed degree days . This provides an implic it unit 

elasticity of weather sens i tive sales with respect to degree 

days . As observed in the analysis of conditional demand 

models, thi s may not necessarily provi de an accurate adjust-

ment . 

If all weather sensitive sales i n the residential sector 

are related to heating and cooling systems, the conditional 

demand analysis suggests a range of applicable elasticities. 

For residential customers using air conditioning, the elas-

ticity range suggested is 1 . 23 to 1.31 . Thus, a unit elas-

ticity adjustment may fail to sufficiently sterilize 

electricity sales of weather effects due to air conditioning . 
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The conditional demand models suggest that the unit 

elastic adjustment may be appropriate for electrically heated 

residential sales. The elasticity range from the average 

price and marginal price based models is 0 . 87 to 1.14. 

The previously estimated total demand models provide an 

alternative method to adjusting weather effects from residen-

tial sales. By predicting historical sales using 30-year 

normal degree days, weather effects can be removed without 

the need for isolating the fraction of sales which are 

weather sensitive. 

The model based approach provides an average weather 

normalized electricity use per customer of 1271 kWh per month 

over the sample period. This compares with actual customer 

electricity use of 1325 kWh per month . Using the unit elas-

tic methodology described above , weather normalized customer 

sales would also be 1271 kWh per customer . 

This result suggests that the unit elastic methodology 

may well provide sufficient correction for the effects of 

weather. However, the model based approach provides a more 

theoretically appealing, and defensible methodology. 

D. CDD Elasticity of Electrically Heated Homes 

Electrically heated homes are thought to be constructed 

to a higher thermal integrity than are natural gas heated 

homes. If this is the case, then the cooling degree day ef-

fects of these "all-electric" dwellings should be 
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significantly less than for other air conditioned houses. In 

order to test this hypothesis, a model was estimated allowing 

for differential weather effects between these two types of 

homes. 

Table 6-1 presents the results of the model estimation. 

Because no multistage tariff is present in the summer , the 

real average price of electricity was chosen as the price 

measure . This is further supported empirically by the 

results of the 2SLS estimations of summer household 

electricity demand reported previously . 

An F-test of the restricted and unrestricted models 

yields a highly significant F- value of 33.3 (1,831) . The 

negative coefficient of SQFTCDDH (SQFTCDDl * DUMH) suggests 

that electrically heated homes do have some physical supe-

riority over other air conditioned homes . This may be in the 

form of better/more insulation or more eff icient cooling 

equipment. 

It is interesting to note that electrically heated homes 

have an average summer electricity usage of 1511 kWh per 

month, while air conditioned, non-electrically heated homes 

have an average summer use of 1656 kWh per month . This dif-

ference is significant at the 5% level . 

E. Weatherization Effects 

The utility survey included a question regarding 

weatherization activities. Because it solicited only a yes 
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Table 6-1. Sum.mer CDD elasticity analysis 

Variable B SE B T Sig T 

ADULTS 159.74141 27 . 20527 5.872 . 0000 

APPL 152.22850 16 .2 1371 9.389 .0000 

AVP -11867.20028 6673 . 85527 -1.778 . 0757 

CHILD 39 . 91319 18 . 07978 2 . 208 .0275 

RINCOME 3 . 155007E-03 5.29780E-03 .596 .5517 

SQFTCDDl 1.35497 8E-03 5 . 12351E-05 26. 446 .0000 

SQFTCDD2 3 . 938733E- 04 1 . 04667E-04 3.763 .0002 

SQFTCDDH -4 . 12645E-04 7 . 15021E-05 -5.771 . 0000 

(Constant) 89 . 21105 201 . 57168 . 443 . 6582 

R Square . 56952 
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or no response, no information exists about the specific ac-

tivities undertaken . Thus, the variable WEATHER (1 if 

weatherization, o otherwise) provides only a broad measure of 

weatherization. 

In order to investigate whether weatherization provides 

significant reductions in household electricity usage several 

models will be estimated. It is not immediately apparent 

what sign of the estimated coefficient of WEATHER will carry. 

If high electricity consumption is a factor in the 

weatherization decision, then those households which have 

been weatherized may have reduced their individual consump-

tion, but not relative to the remainder of households . A 

better method of analysis would entail collecting pre and 

post weatherization electricity consumption data. 

As an effort to control for the above situation, the 

variable YEAR (year house was built) will also be entered 

into the model estimation. Because older homes tend to be 

less well insulated and thus greater consumers of electricity 

for space conditioning, YEAR is hypothesized to be positively 

related to electricity use. By controlling for dwelling vin-

tage, some of the effects of the relative reduction of usage 

attributable to weatherization may be mitigated. 

Another issue in weatherization relates to human be-

havior. If those households that weatherize also make life-

style changes to reduce electricity use, then the portion of 
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the effect attributable to physical improvements can not be 

isolated from behavioral adaptation. 

To investigate this issue, a model will be formulated 

for the transitional season. This season is assumed to use 

require no space conditioning, and any weatherization effects 

apparent would tend to be behavioral rather than physical 

changes . 

Table 6-2 provides the estimation results. The es-

timated coefficient of YEAR is negative and significant at 

the 10% level, indicating that newer homes consume marginally 

less electricity . The weatherization measure is not sig-

nificantly different from zero, suggesting that this 

weatherization measure is not reflecting a lifestyle adapta-

tion which reduces electricity usage. 

The sum.mer season model was also estimated including the 

variable YEAR, and WAC (WEATHER*DUMAC). The measure of 

weatherization is used since the effect weatherization is 

only applicable to those dwellings with s pace conditioning. 

The results of the estimation appear in Table 6-3. 

The estimated coefficient of YEAR is again negative and 

is significant at the 15% level. WAC is negative and highly 

significant, suggesting that other things equal, weatherized 

dwellings have an average electricity savings of ap-

proximately 300 kWh per month in the air conditioning season. 
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Table 6-2 . Transitional weatherization analysis 

Variable B SE B T Sig T 

ADULTS 145.37291 28.89951 5 . 030 .0000 

APPL 154.84051 15.98095 9.689 .0000 

AVP -40827 . 43120 7504 . 40010 - 5.440 .0000 

CHILD 61.98145 19.51523 3.176 .0016 

RINCOME . 01108 5 . 82730E-03 1.901 .0581 

WEATHER -21 . 03758 45 . 49207 - . 462 . 6440 

YEAR -1 . 73745 . 89554 -1.940 .0530 

(Constant) 4199.51323 1762 . 09001 2.383 . 0176 

R Square . 37876 
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Table 6-3 . Summer weatherization analysis 

Variable B SE B T Sig T 

ADULTS 166.24620 27 . 11924 6.130 .0000 

APPL 133 .71805 15.41915 8 . 672 . 0000 

AVP -12082 . 19173 6646.82802 -1 . 818 . 0695 

CHILD 70 . 52681 18 . 57228 3 . 797 .0002 

RINCOME 8 . 322111E-04 5 .63457E-03 . 148 . 8826 

SQFTCDDl 1 . 299466E-03 5.04141E-05 25.776 . 0000 

SQFTCDD2 l . 945098E-04 l.08867E-04 1 . 787 . 0744 

WAC - 289 . 78201 45.48650 - 6.311 . 0000 

YEAR - 1 . 28062 . 84968 -1.507 . 1321 

(Constant) 2731.50359 1661 . 95579 1 . 644 .1006 

R Square . 57464 
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A similar analysis was conducted for the winter season, 

except the weatherization effect was allowed to vary between 

electrically heated and non-electrically heated households. 

Thus, the variables WNOHEAT (WEATHER*(l-DUMH)) and WHEAT 

(WEATHER*DUMH) are used. This estimation is presented in 

Table 6-4. 

The effect of the year the dwelling was built is nega-

tive and highly significant . The effect of weatherization on 

electrically heated homes is negative and not significantly 

different from zero . The effect of weatherization on non-

electrically heated homes is negative and significant at the 

1% level . Because electricity usage of electrically heated 

homes is much more weather sensitive than are non-

electrically heated homes , this result is somewhat puzzling. 

It may be the case that electrically heated homes, for the 

reasons cited previously, do not display relative reductions 

in usage attributable to weatherization. 

These results cautiously suggest that weatherization ac-

tivities provide the greatest electricity reduction in the 

summer season . Additionally, some weatherization savings are 

also observed in the winter season, at least by dwellings 

without electric heat. As previously suggested, a better 

weatherization analysis would utilize pre and post activity 

consumption data , and perhaps some measure of the weatheriza-

tion activity taken. 
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Table 6-4. Winter weatherization analysis 

Variable B SE B T Sig T 

ADULTS 145 . 91261 21 . 23925 6.870 . 0000 

APPL 118 . 09020 1 2 . 45971 9 . 478 .0000 

AVP -45556 . 33413 4450 . 71554 - 10.236 . 0000 

CHILD 66 . 03892 14.37723 4 . 593 .0000 

RINCOME 5.371367E- 04 4 . 34418E-03 .1 24 . 9016 

SQFTHDDl 9 . 774354E- 04 2 . 61330E-05 37 . 402 . 0000 

SQFTHDD2 1.196889E- 04 1 . 62062E-05 7 . 385 . 0000 

WHEAT - 1 . 35155 54 . 64987 - . 025 . 9803 

WNOHEAT - 110 . 29570 39.99097 -2.758 .0059 

YEAR -2.47020 . 68424 - 3 . 610 .0003 

(Constant) 5750.49662 1340 . 41557 4.290 . 0000 

R Square .77086 
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P. Forecasting 

The 2SLS model in linear specification provided the best 

backcasting of historical usages, and will be used to analyze 

forecasting ability . The 12 month period from May 1987 to 

April 1988 will be forecasted and appropriate confidence in-

tervals prepared . 

The first stage price equation will be utilized to 

prepare the price forecasts. The prices will be adjusted by 

the ratio of average model estimation period CPI to forecast 

month CPI to adjust for inflationary changes . Actual 

weather, as measured by degree days will be used for the 

weather measure. Because no additional income data are 

available, real income level is held constant for the 

forecasts. All additional independent variables will be also 

held constant. 

The results of the forecast and corresponding 95% con-

fidence intervals are displayed in Figure 6-4 and Table 6-5. 

Evident from the figure, the forecast confidence intervals 

are greatest during the transitional months. This occurs due 

to the relatively low R-square of the period model. Summer 

and winter intervals are approximately equal. 

Seven of the 12 monthly average uses are contained 

within the 95% confidence interval. Of the 5 months with 

usage outside the confidence interval, 3 vary by less than 35 

kWh from observed usage. The remaining two months, May and 
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Table 6-5. Forecasted electricity use 

95% er 95% CI 
LOWER FORECAST UPPER 

JANUARY 1617 . 720 1660.76 1703.799 

FEBRUARY 1520.585 1559 . 88 1599 . 165 

MARCH 1177.119 1218 . 96 1260.792 

APRIL 909.5538 965 . 70 1021.849 

MAY 811.2192 869 . 50 927.7736 

JUNE 1314 . 046 1372 . 44 1430.841 

JULY 1563 . 938 1629 . 30 1694.667 

AUGUST 1200.556 1258.75 1316.947 

SEPTEMBER 798.7395 869.25 939 . 7670 

OCTOBER 811.2192 869 . 50 927.7736 

NOVEMBER 1092 .623 1138 . 25 1183.873 

DECEMBER 1403.529 1440.90 1478.273 
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August, show the largest deviation between forecast and ac-

tual . August, with fewer COD than June , achieved greater 

electricity usage than June . This result was unexpected and 

can not be accounted for. 

May usage was also higher than expected, possibly due to 

weather effects not accounted for in the transitional season 

model . Cooling degree days for May were 121, compared to a 

30 year average of 66 COD . As a result, some households may 

have utilized air conditioning systems . On an annual basis, 

the average forecasted elec tricity use was 1238 kWh , compared 

to the observed use of 1244 kWh . 
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VII. CONCLUSIONS A.ND RECOMMENDATIONS 

A. Conclusions 

Several interesting issues have emerged from the 

numerous model estimations undertaken in this study. Those 

issues to be discussed are : the effects of varied functional 

form in the estimations, the selection and modeling of the 

price measure, implications of the estimated elasticities , 

and the use of conditional demand analysis. 

1. Functional Pora 

Ordinary least squares was used to estimate demand 

models with both linear (level) and double log models . While 

the estimated models have been shown to display certain 

similarities , some significant deviations also occurred . 

Backcasts using the linear models consistently out per formed 

backcasts from the double log model s in terms of accuracy. 

Visual analysis of the backcasts suggests that the lineariza-

tion caused by the log transformation may be inappropriate. 

Figure 6-2 reveals that double log backcasts fail t o 

capture the peaks of electricity use . Because these peaks 

are largely related to weather effects, it may be the case 

that double log models do not capture the effect of weather 

on electricity use . 

The linear specification models proved superior in both 

overall and "peak and valley" backcasting. This statement 

gains support from Figure 6-1 . When used to forecast the 
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mean electricity use of the sample from May 1987 to April 

1988, the linear model performed well. This lends further 

support to the linear specification, at least for forecasting 

use. 

In terms of estimated parameters, the log models tended 

to display a positive , significant income effect . This 

result is suggested both by consumer theory and previous 

studies. The effect of income in the linear specification 

models was consistently negligible. Other elasticity dif-

ferences were also observed using the linear and log 

specifications and will be discussed later in this chapter . 

While neither model specification is clearly superior, 

their differences and similarities do highlight the need to 

closely examine modeling objectives. If forecasting is the 

primary objective, minimizing forecast error, while preserv-

ing the essence of relevant theory is a suitable goal. A 

model with good explanatory power and significant parameters 

may fail to provide good forecasts. Alternatively, a model 

which provides excellent forecasts, may not always yield 

satisfying estimates of structural parameters, such as demand 

determinant elasticities. 

2 . Price Measures and Models 

This study examined three alternative methods of 

specifying electricity prices, average price (OLS), average 

price (2SLS model), and marginal price. Average price was 
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calculated ex post from billing and consumption data, while 

marginal price was determined from the ut~lity tariff. The 

selection of the best measure of price has long been argued, 

and was previously discussed in this paper. The results of 

this research support the model-based , 2SLS approach to price 

measurement and estimation of demand models. 

The decreasing block pricing of electricity during the 

winter and transitional seasons provides an inherently nega-

tive relationship between price and use. This relationship , 

when left uncorrected, provided own price elasticity es-

timates in the range of unity . The use of a price equation 

and two stage least squares for estimation reduced winter 

price elasticities substant i ally. It is thought that this 

results from the correction of the negative bias in decreas -

ing block pricing . 

The results of this study are applicable outside the 

utility industry. Many products , from insurance coverage to 

consumer goods, are sold with "quantity" discounts. When 

modeling the demand for these goods , both average price (or 

marginal price) and a model based price measure should be in-

vestigated . The overstatement of own price elasticity can 

severely overstate sales increases (or decreases) due to 

product price adjustments . 
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3 . Estimated Elasticities 

Numerous elasticities were estimated in this study, in-

cluding own price, income, summer weather, winter weather, 

household size, and appliance stock elasticities. The mag-

nitude and reasonableness of each elasticity was discussed 

previously in the context of the estimated model. However, 

several issues warrant further discussion . Additionally, 

many elasticities have specific implications for regulatory 

and utility activities. 

Own price elasticity has been estimated to be in the 

range of -0.1 to -0.3 for summer and winter months, and ap-

proximately unit elastic in the transitional season. This 

suggests , other things equal, that pr i ce increases will sub-

stantially increase total revenue . Further, the determina-

tion of rates based solely on historic sales and revenue 

requirements will under-collect total revenue. Regulators 

and utilities should take own price elasticity into account 

when setting prospective rates. 

The magnitude of income elasticity is less clear from 

this study, however it appears to be bracketed between zero 

and 0.10 for summer and winter months (transitional month 

elasticity is somewhat greater). Additionally, increases in 

income may lead to increases in the household appliance 

level. The effect of increases in the appliance stock (as 

well as appliance replacement) may increase or decrease 
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electricity use . For example, the purchase of a microwave 

oven may reduce the electricity used by an electric range 

more than by a one-to-one relationship. Additionally, new 

appliances tend to be more energy efficient , and hence con-

sume less electricity with comparable utilization. 

Utility planners should not ignore the effects of income 

level changes when planning for future generating capacity . 

It is presently unclear what the magnitude and direction of 

income effects will be in the l ong run , however research can 

be undertaken to monitor changes in both appliance ef-

ficiencies and holdings . 

Summer weather elasticity estimates range between 0.40 

and 0 . 60 for air conditioned homes in the current study . For 

the winter season, the estimated range is much greater, from 

0 . 40 to 1 . 20, double log and linear models, respectively. 

This leaves open a substantial amount of latitude in pursuing 

weather normalization of electricity sales. As demonstrated 

previously , the often used unit elastic adjustment of weather 

sensitive sales provides good results with this study 1 s data . 

Weather normalization is an important part of utility 

ratemaking and model-based adjustments should be analyzed 

prior to accepting the common adjustment method. 

A substantial dlfference between the consumption effects 

of children and adults has also been demonstrated. As 

household profiles change , and specifically as the Iowa 
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population ages, the ratio of adults to children may in-

crease. This suggests that household electricity use may 

rise if adult children live with parents, or aging parents 

live with their children. As with appliances and ef-

ficiencies, utility planners should monitor trends in 

household size and composition . 

The final elasticity to examine is that of the appliance 

stock. As discussed above, this relationship may be very 

dynamic due to changes in appliance efficiencies . At 

present, the estimated elasticity is approximately 0 . 30 to 

0.60 when measured by the simple summation of appliances from 

the specified list . 

4 . Conditional Demand Analysis 

The results of the conditional demand analysis are 

mixed , but overall encouraging. This method of analysis ap-

pears best suited for large electricity using appliances, 

such as space conditioning. It did provide some other 

reasonable use estimates for freezers and electric dryers. 

Most smaller appliances yielded unrealistically high, or 

negative, estimated electricity usage . 

Overall price and income elasticities are consistent 

with total demand models , however the lack of significance 

and incorrect signs are observed. Weather effect elas-

ticities are also very comparable to those estimated using 

other methods. 
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While the conditional demand model was used with mixed 

success, it has a substantial cost advantage over direct 

metering, with an approximate fixed cost of $1000 ~nd $10 

monthly_ per household. If successful, conditional demand 

analysis can economically provide average appliance use es-

timates and help isolate demand determinant relationships. 

B. Recommendations 

1. Data 

As with most studies utilizing secondary data, this 

study suffered at times from failing to have enough precise 

and relevant measures of all variables. Income and age of 

household head were coded as ranges, and thus precise 

measures of these potentially critical variables were not 

available. Weatherization was a binary indicator of 

weatherization activity and failed to elucidate the a ction 

taken. Additionally , only one observation of household 

demographics and appliances was available for analysis. 

If any of these variables changed over the two year es-

timation period, the resulting inaccuracies would bias the 

estimated parameters . It is nearly certain that nominal in-

come increased over the period, and the lack of significance 

of income in some estimations may be a result of this factor. 

For the purposes of both econometric studies and load 

research (the initial purpose of the data collection), all 

data should be ~ollected in actual values instead of coded 



www.manaraa.com

124 

ranges. From a practical standpoint this may reduce the 

likelihood of survey response, and thus several tests should 

be conducted to jointly optimize survey response rates and 

data quality. The surveys should be readministered peri-

odically to determine what changes are occurring in the 

sample households. 

This study utilized 24 months of data observations on 

105 households. Most conditional demand studies are con-

ducted on samples in excess of 1000 households. A sample 

size in the thousands of households is also common for other 

micro-level modeling efforts. The increase in sample size 

provides for more precise parameter estimates, smaller 

forecast errors, and adaitional flexibility in modeling 

(especially sub-populations) . If replicated at a future 

date, the results from the methods and models of this study 

may be improved by using a larger sample size. 

2 . Policy 

As stated in the introduction to this study, e conometric 

methods can aid legislators, regulators, and public utilities 

to achieve their desired goals. While the goals they pursue 

are diverse , this study has demonstrated the flexibility of 

econometric modeling of residential electricity demand . 

Conditional demand analysis , despite its somewhat lack-

luster performance , holds the potential to help define 

lifeline electricity usage and rates for legislators. This 



www.manaraa.com

125 

study's analysis of weatherization effects also demonstrates 

the ability of econometric models to isolate conservation ef-

fects and assist in energy policy planning. The own-price 

elasticity estimates can assist in projecting the possible 

effects caused by the rate shock of nuclear plant additions. 

Regulators are charged with enforcing statutes and 

overseeing utility operations. Both total household and con-

ditional demand models can provide information to aid in this 

pursuit. As the primary reviewers of utility forecasts and 

methodologies , regulators can use the forecasting methodology 

demonstrated in this study to project utility sales. The 

weather normalization procedures can assist in sterilizing 

the effects of weather from historic sales, thus providing a 

base sales figure for rate design. Conditional demand holds 

the potential to provide end use estimates and forecasts for 

various appliances. Coupled with forecasted appliance 

saturations, these forecasts can provide a better picture of 

future consumer demand . 

Public utilities , as the public trustee in charge of 

supplying adequate energy, are concerned with planning for 

plant additions and preparing suitable energy management 

policies, among a host of other concerns. The forecasting 

and analys i s methodology provided in this study can assist in 

preparing accurate forecast s of future electricity use. The 

various estimations of space conditioning elasticities 
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provides a format to analyze the demand effects of abnormal 

weather. Finally, conditional demand analysis may help 

utilities to better recognize the contributions of changes in 

the appliance stock to electricity demand . 

Ours is an information-based society, rich with evolving 

data collection and analysis systems. The use of econometric 

modeling can assist us in using our information resources to 

the fullest extent in our search for understanding the 

residential demand for elec tricity . 
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x. APPENDIX A: OLS MP LINEAR ESTIMATIONS 

Table A-1. Winter OLS MP linear estimation 

Variable B SE B T Sig T 

ADULTS 130 . 39597 21 . 21895 6 . 145 .0000 

APPL 106 . 74628 12 . 54775 8 . 507 . 0000 

CHILD 61 . 13765 14 . 04529 4 . 353 . 0000 

RINCOME -6.00499E-04 4 . 04207E-03 - . 149 .8819 

RMP - 49169 . 80564 4821 . 71502 - 10.198 . 0000 

SQFTHDDl 9 . 151885E- 04 2 . 62358E-05 34 . 883 .0000 

SQFTHDD2 1 . 481033E-04 l . 64738E- 05 8 . 990 . 0000 

(Constant) 962 . 01654 132 . 54316 7.258 . 0000 

R Square . 76182 
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Table A-2 . Summer OLS MP linear estimation 

Variable B SE B T Sig T 

ADULTS 165.29661 27.72418 5 . 962 .0000 

APPL 123 .23300 15 . 64081 7 . 879 . 0000 

CHILD 40 . 98270 18 . 43026 2 . 224 .0264 

RINCOME 3.530857E-03 5 . 40094E-03 . 654 . 5135 

RMP - 14140 . 84320 8874 . 70618 -1.593 .1 115 

SQFTCDDl 1 . 287541E-03 5 . 17828E-05 2 4 . 864 . 0000 

SQFTCDD2 3 . 725425E- 04 1 . 06972E-04 3.483 . 0005 

(Constant) 204 . 60600 243.62723 . 840 . 4012 

R Square . 55188 
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Table A-3 . Transitional OLS MP linear estimation 

Variable B SE B T Sig T 

ADULTS 105 . 69800 25 . 97709 4.069 .0001 

APPL 98.53350 15.02063 6 . 560 . 0000 

CHILD 57 . 12564 17.07821 3.345 . 0009 

RINCOME 8 . 978093E-03 4.89049E-03 1 . 836 .0671 

RMP - 53840.31293 4551.82382 - 11.828 . 0000 

(Constant) 1294 . 44732 149.97 125 8 . 631 . 0000 

R Square . 50051 
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Table A- 4. Alternative transitional OLS MP linear 
estimation 

Variable B SE B T Sig T 

ADULTS 85.70390 24.15713 3.548 .0004 

APPL 82 . 76511 14 . 02660 5 . 901 .0000 

CHILD 48 . 77233 15.83560 3 .080 .0022 

RINCOME 3.927201E-03 4.56553E-03 .860 .3902 

RMP -57072 . 79050 4229 . 86095 -13 . 493 .0000 

SQFT . 17927 .02136 8 . 392 .0000 

(Constant) 1196 . 67186 139 . 27254 8 . 592 . 0000 

R Square . 57328 
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Table A-5. Pooled OLS MP linear estimation 

Variable B SE B T Sig T 

ADULTS 138.61848 14 . 71983 9 . 417 .0000 

APPL 111.53626 8.53317 13 . 071 . 0000 

CHILD 53.89020 9 . 75197 5 . 526 .0000 

RINCOME 2.284392E-03 2.81948E-03 . 810 .4179 

RMPST -1 4002 .7213 1 8130 .73989 -1.722 .0852 

RMPTT -52499.52874 5826.93681 -9.010 . 0000 

RMPWT -48398.92825 4656 . 48804 - 10 . 394 .0000 

SQFTCDDl 1 . 296910E-03 4 . 67391E-05 27.748 . 0000 

SQFTCDD2 3.544615E-04 9 . 51808E- 05 3 . 724 . 0002 

SQFTHDDl 9 . 104817E-04 2 . 54309E-05 35. 802 . 0000 

SQFTHDD2 l.451865E- 04 1.59770E-05 9 . 087 . 0000 

SUMMER -59 8 . 01681 234.57739 -2 . 549 .0109 

TRANS 324 . 10364 158.77863 2 . 041 .0413 

(Constant ) 894 . 98474 115 . 83256 7.7 27 . 0000 

R Square . 70471 
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XI . APPENDIX B: LINEAR 2SLS FIRST STAGE PRICE ESTIMATIONS 

Table B-1 . Winter linear 2SLS first stage 
estimation 

Variable B SE B T Sig T 

ADULTS -l.93817E-04 l.01894E-04 -1.902 . 0574 

APPL -3.31613E-04 5.98133E-05 -5.544 .0000 

CHILD -8.92299E-05 6.78474E- 05 - 1.315 .1887 

DUMFEE -9 . 90389E-05 l.67850E-04 - . 590 . 5553 

DUMGEN 4.491580E-03 l.53103E-04 29.337 . 0000 

DUMRATE -2 . 29199E-03 3 . 37254E-04 -6 . 796 . 0000 

RINCOME -5 . 60352E-08 1 . 95840E-08 - 2 . 861 . 0043 

SQFTHDDl - 8.25314E-10 l.59473E-1 0 -5.175 . 0000 

SQFTHDD2 4 . 880019E-10 8 . 45443E-ll 5.772 .0000 

( Constant) . 02397 3. 48933E- 04 68.704 . 0000 

R Square . 61365 
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Table B-2. Summer linear 2SLS first stage 
estimation 

Variable B SE B T Sig T 

ADULTS -1.46930E-04 9 . 19388E-05 -1.598 . 1104 

APPL -l.06567E-04 5.35382E-05 -1.990 .0469 

CHILD -8.17959E-05 6.11155E-05 -1.338 .1811 

DUMFEE -8.47865E-05 l.51285E-04 -.560 .5753 

DUMGEN 4.733864E-03 1.40674E-04 33.651 .0000 

RINCOME -2.72379E-08 1 . 79627E-08 -1 . 516 .12 98 

SQFTCDDl l . 442748E-09 1.79503E-10 8 . 037 .0000 

SQFTCDD2 2.371023E-09 3 . 58105E-10 6.621 . 0000 

(Constant) . 02420 3.27857E-04 73.798 . 0000 

R Square .58061 
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Table B-3. Transitional linear 2SLS first stage 
estimation 

Variable B SE B T Sig T 

ADULTS -2 . 47569E-04 l.49516E-04 -1.656 . 0985 

APPL -l.63135E-04 8 . 66212E-05 -1.883 .0604 
~ 

CHILD -1.91919E-04 9.97211E-05 -1.925 .0550 

DUMFEE 3.911131E-05 2.43478E-04 . 161 . 8725 

DUMGEN 3 . 165035E-03 2.22859E- 04 14.202 . 0000 

DUMRATE -1.82514E-03 2 . 60605E-04 -7 . 003 .0000 

RINCOME -3. 64825E- 08 2 . 85926E- 08 -1 .276 .2027 

(Constant) . 02441 4 . 94322E-04 49 . 384 . 0000 

R Square . 42050 
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XII. APPENDIX C: 2SLS LINEAR PRICE MODEL ESTIMATIONS 

Table C-1. Winter linear price model estimation 

Variable B SE B T Sig T 

DUMFEE 5.102279E-05 1.60555E-04 . 318 . 7507 

DUMGEN 4.660943E-03 1.48016E-04 31.489 .0000 

DUMRATE -2 . 66427E-03 2.29364E-04 -11 . 616 . 0000 

NORMUSE -1.30452E-06 9.33428E-08 -13 . 976 .0000 

(Constant) .02348 1.56154E-04 150 . 387 .0000 

R Square .63095 
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Table C-2 . Summer linear price model estimation 

Variable B SE B T Sig T 

DUMFEE 1.661497E-04 1.49481E-04 1 . 112 . 2667 

DUMGEN 4.478470E-03 1.45345E-04 30.813 .0000 

NORMUSE 1 . 527139E-07 8.21602E-08 1. 859 . 0634 

(Constant) . 02385 1.71575E-04 139.016 .0000 

R Square . 53513 
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Table C-3 . Transitional linear price model 
estimation 

Variable B SE B T Sig T 

DUMFEE 6.231296E-05 2.37324E-04 .263 .7930 

DUMGEN 3.199002E-03 2 . 18662E-04 14 . 630 . 0000 

DUMRATE -1.29160E-03 2 .78354E-04 - 4 . 640 . 0000 

NORMUSE -1 . 31152E-06 2 . 33941E-07 -5 . 606 .0000 

(Constant) . 02370 2 . 69195E-04 88 . 054 .0000 

R Square . 43849 
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XIII . APPENDIX D: 2SLS LINEAR DEMAND MODEL ESTIMATIONS 

Table D-1 . Winter 2SLS linear demand model 
estimation 

Variable B SE B T Sig T 

ADULTS 152.20998 21.98901 6.922 .0000 

APPL 131 . 54356 13 . 05666 10.075 . 0000 

AVPHATW - 8463 .48685 7126.50869 -1.188 .2352 

CHILD 63 . 13334 14 . 61983 4 . 318 . 0000 

RINCOME -2 . 33574E-03 4 . 23616E-03 -.551 . 5815 

SQFTHDDl 1 . 030747E-03 2 . 55280E-05 40.377 . 0000 

SQFTHDD2 9 . 164808E- 05 1.74367E- 05 5 . 256 . 0000 

(Constant) 10 . 58182 194 . 33564 . 054 . 9566 

R Square . 74882 
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Table D-2. Summer 2SLS linear demand model 
estimation 

Variable B SE B T Sig T 

ADULTS 163 . 28548 27.72429 5.890 . 0000 

APPL 121 . 73698 15.65040 7 . 779 .0000 

AVPHATS -16363.93877 8954 . 52979 -1.827 .0680 

CHILD 39.78792 18.43033 2.159 .0311 

RINCOME 3.171507E-03 5.40029E-03 . 587 .5572 

SQFTCDDl 1 . 299732E-03 5 . 12904E-05 25 . 341 . 0000 

SQFTCDD2 3.973722E-04 1.06748E-04 3.723 . 0002 

(Constant) 286 . 71008 258 . 48380 1 . 109 . 2677 

R Square .55231 
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Table D-3 . Transitional 2SLS linear demand model 
estimation 

Variable B SE B T Sig T 

ADULTS 147 . 56550 29.30304 5.036 .0000 

APPL 148 . 57687 16 . 49389 9.008 .0000 

AVPHATT -44245 . 12435 12232.79612 -3 . 617 . 0003 

CHILD 58 . 29180 19 . 55028 2.982 .0030 

RINCOME 7 . 305670E-03 5 . 59440E-03 1.306 .1923 

(Constant) 942.18372 333 . 87122 2 . 822 .0050 

R Square . 35218 
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XIV. APPENDIX E: OLS MP DOUBLE LOG ESTIMATIONS 

Table E-1. Winter OLS MP double log estimation 

Variable B SE B T Sig T 

ADULTS . 27736 . 03525 7.869 .0000 

APPL . 07181 . 01127 6.375 . 0000 

CHILD .01581 2.51367E-03 6 . 288 .0000 

RINCOME . 05477 . 02108 2 . 598 .0095 

RMP - . 67635 .07597 - 8 . 902 .0000 

SQFTHDDl . 42810 . 02214 19 . 335 . 0000 

SQFTHDD2 . 36887 . 02188 16 . 856 . 0000 

(Constant) - 1 .94512 .46290 -4 . 202 .0000 

R Square .71981 



www.manaraa.com

145 

Table E-2. Summer OLS MP double log estimation 

Variable B SE B T Sig T 

ADULTS . 29884 .04838 6 . 177 . 0000 

APPL 6.775681E-03 . 01603 . 423 . 6727 

CHILD 6.715259E-03 3.49829E-03 1 . 920 .0553 

RINCOME .08038 . 03012 2 . 669 .0078 

RMP -.10928 . 17294 - . 632 . 5276 

SQFTCDDl . 40205 . 02403 16 . 728 .0000 

SQFTCDD2 . 35872 .02457 14 . 602 .0000 

(Constant) . 64696 . 71327 . 907 . 3647 

R Square . 46980 
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Table E-3 . Transitional OLS MP double log 
estimation 

Variable B SE B T Sig T 

ADULTS .27541 . 06769 4 . 069 . 0001 

APPL . 11324 . 02175 5.207 . 0000 

CHILD . 01515 4 . 92366E-03 3 . 076 . 0022 

RINCOME .11342 . 04114 2 . 757 .0061 

RMP -1 . 12533 . 09161 - 12 . 284 . 0000 

(Constant) 1. 00108 . 48245 2 . 075 . 0386 

R Square . 45628 
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Table E-4. Alternative transitional OLS MP double 
log estimation 

Variable B SE B T Sig T 

ADULTS .19373 .06580 2.944 . 0034 

APPL . 08893 .02109 4 . 218 .0000 

CHILD . 01313 4.70775E-03 2 . 789 . 0055 

RINCOME . 08777 . 03945 2.225 . 0266 

RMP -1 . 13705 .08742 -13.007 .0000 

SQFT .33757 .05219 6 . 468 .0000 

(Constant) -1 . 24494 .57658 -2.159 . 0314 

R Square . 50629 
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XV. APPENDIX P: 

DOUBLE LOG 2SLS PIRST STAGE PRICE ESTIMATIONS 

Table F-1. Winter double log 2SLS first stage 
estimation 

Variable B SE B T 

ADULTS - . 03301 9.45040E-03 -3.493 

APPL -3.60474E-03 3.07803E-03 -1.171 

CHILD 8 . 626291E-04 6 . 82925E-04 1.263 

DUMFEE -5 . 92 2 45E-04 6 . 86792E- 03 -. 086 

DUMGEN . 19380 6 . 21422E-03 31.186 

DUMRATE 1 . 58530 . 18034 8 . 791 

RINCOME -.03416 5 . 72439E-03 -5.968 

SQFTHDDl - . 09124 . 01077 -8 . 474 

SQFTHDD2 . 03630 7 . 10786E-03 5 .1 07 

(Constant) - 3.98519 . 10780 -36 . 970 

R Square . 65652 

Sig T 

.0005 

. 2418 

. 2068 

. 9313 

. 0000 

. 0000 

.0000 

. 0000 

. 0000 

. 0000 
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Table F-2. Summer double log 2SLS first stage 
estimation 

Variable B SE B T Sig T 

ADULTS -.02036 7 . 62650E-03 -2.670 .0077 

APPL l . 041688E-03 2.58043E-03 .404 .6865 

CHILD -6.13992E-04 5.50712E-04 -1 . 115 .2652 

DUMFEE -4.76300E-04 5 . 46009E-03 -.087 .9305 

DUMGEN . 18220 5.18748E-03 35 . 123 . 0000 

RINCOME -.01116 4 . 75781E-03 -2.346 . 0192 

SQFTCDDl . 04062 3 . 90335E-03 10 . 407 . 0000 

SQFTCDD2 . 04253 3 . 97343E-03 10. 703 "· 0000 

(Constant) -4 . 15835 . 06463 -64.344 . 0000 

R Square .60202 
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Table F-3. Transitional double log 2SLS first stage 
estimation 

Variable B SE B T Sig T 

ADULTS -.02845 . 01378 -2.064 .0396 

APPL -2.85161E-03 4 . 46721E- 03 - . 638 . 5236 

CHILD -8 . 42611E-04 l . 00383E-03 -.839 . 4017 

DUMFEE 5.859400E- 03 9.97307E-03 . 588 . 5572 

DUMGEN . 13369 9.10744E-03 14.679 . 0000 

DUMRATE -. 08730 . 01031 -8.469 . 0000 

RINCOME - . 01551 8 . 39925E-03 -1 . 847 . 0655 

(Constant) - 3 . 63314 . 07467 -48 . 656 .0000 

R Square . 44053 
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XVI. APPENDIX G: MP CONDITIONAL DEMAND MODEL ESTIMATION 

Variable B SE B T Sig T 

A6CDD 1.316403E-03 5 . 12319E-05 25.695 .0000 
A6MP 1983.85468 6453.92986 . 307 .7586 
A6Y 1.168523E-04 6.41182E-03 .018 .9855 
A8HDD 8 . 271085E-04 3.29185E-05 25.126 .0000 
A8MP -59922.63944 7454 . 08596 -8.039 .0000 
A8Y -5.31719E-03 7.60028E-03 -.700 .4842 
COM1AD 41 . 14991 3 . 64544 11. 288 .0000 
COMlCH 13 . 43086 2.53953 5 . 289 .0000 
COMlMP -1208 . 08656 1794.94091 - . 673 .5010 
COMlY l . 674003E-03 1.60678E-03 1 . 042 .2976 
DEHUM -224 . 91995 50.27119 -4.474 . 0000 
DUMA CS -227.83905 170.24075 -1.338 .1809 
DUMHW 826.29800 152 . 78781 5.408 .0000 
DW 4.80008 60 . 66204 .079 .9369 
ED RYER 104.04717 51.70397 2.012 .0443 
ERANGE -117.14541 54.90768 -2.133 .0330 
FREEZ 14.61758 52 . 20234 . 280 . 7795 
MWAVE 194 . 45399 51.49858 3.776 . 0002 
RINCOME 4.628191E-03 6.23375E-03 .742 .4579 
RMP -19549 . 01846 8312.09737 -2.352 .0188 
SUMMER 128 . 56570 49.88481 2 . 577 . 0100 
TRANS 30.78835 34.42350 . 894 . 3712 
(Co nstant) 942 . 25625 206.37112 4.566 . 0000 

R Square .71381 
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XVII. APPENDIX H: CONDITIONAL DEMAND DEVIATION ESTIMATIONS 

Table H-1. AVP conditional demand model deviation 
estimation 

Variable 

CA6CDD 
CA6P 
CA6Y 
CABHDD 
CA8P 
CA8Y 
CAVP 
CCOMlAD 
CCOMlAVP 
CCOMlCH 
CCOMlY 
CR INCOME 
DE HUM 
DUMA CS 
DUMHW 
DW 
ED RYER 
ERAN GE 
FREEZ 

MWAVE 
SUMMER 
TRANS 
(Constant) 
R Square 

B SE B 

l.329589E-03 4.85350E-05 

-3306 . 41554 8153.87437 

l . 659538E-04 6.30488E-03 

8.455454E-04 3.19211E-05 
-103891.0578 9088 . 22319 

- . 02659 7 . 53306E- 03 

858 . 34907 7063.18288 

51.14709 3.57639 
-2862.12502 1830.60461 

14 .5624 8 2.50751 

1.218658E- 03 1.59827E-03 

5.968073E-03 6.24042E- 03 

-141.88193 

630 . 58367 
1523.91281 

114.53923 

191.95844 

-42.27634 

104.06470 

279.19112 

111.18532 

87 .39234 

521.83453 

.72108 

22.36149 

51.23760 

42.98408 
33 . 93771 

24.74048 

29 . 16793 

22 . 76821 

26 . 59599 

49.27309 

32.54526 

34.49952 

T Sig T 

27 . 394 .0000 

- . 406 . 6851 

.026 .9790 

26 . 489 . 0000 
- 11 . 431 .0000 

-3 . 529 . 0004 

.122 .9033 

14. 301 . 0000 
-1 . 563 . 1181 

5 . 808 .0000 

. 762 . 4458 

.956 .3390 

-6 .345 .0000 

12 . 307 . 0000 

35 . 453 . 0000 

3.375 .0007 

7.759 . 0000 

-1. 449 . 1473 

4 . 571 .0000 

10 . 497 . 0000 

2 . 257 .0241 

2.685 .0073 
15.126 . 0000 
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Table H-2 . MP conditional demand model deviation 
estimation 

Variable B SE B T Sig T 

CA6CDD 1 . 316403E-03 5.12319E- 05 25.695 .0000 
CA6MP 1983 .85 453 6453.92990 .307 . 7586 
CA6Y 1 . 168536E-04 6.41182E-03 .018 .9855 
CA8HDD 8.271085E-04 3.29185E-05 25.126 .0000 
CA8MP -59922 . 63743 7454.08600 -8.039 .0000 
CA8Y -5.31719E-03 7 .60028E-03 - .700 . 4842 
CCOMlAD 41 . 14991 3.64544 11.288 .0000 
CCOMlCH · 13 . 43086 2 . 53953 5 . 289 .0000 
CCOMlMP -1208 . 08679 1794.94092 - . 673 . 5010 
CCOMlY 1 . 674002E-03 l.60678E-03 1. 042 .2976 
CRINCOME 4.628192E-03 6.23375E-03 .742 .4579 
CRMP -19549.01895 8312.09741 -2 .352 .0188 
DE HUM -1 35 . 32474 22.71342 -5.958 .0000 
DUMACS 642.85132 56.31283 11. 416 . 0000 
DUMHW 1188.30849 47.02864 25 .268 .0000 
ow 91 . 30945 34.78150 2 . 625 .0087 
ED RYER 194.21836 25 . 05528 7.752 . 0000 
ERAN GE -32.48653 29.60660 -1.097 .2726 
FREEZ 101.74059 23.08404 4.407 . 0000 
MWAVE 281 . 93108 27 . 02765 10 . 431 .0000 
SUMMER 128 . 56569 49 . 88481 2.577 . 0100 
TRANS 30.78833 34.42350 .894 .37 12 
(Constant} 552.84117 36.27661 15.240 .0000 
R Square . 71381 
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XVIII. APPENDIX I: CONDITIONAL DEMAND MODEL BIAS ANALYSIS 

Table I-1. AVP conditional demand model bias 
analysis 

Variable 

CA6CDD 
CA6P 
CA6Y 
CA8HDD 
CA8P 
CA8Y 
CAVP 
CCOMlAVP 
CCOMlY 
CR INCOME 
DEHUM 
DUMACS 
DUMHW 
DW 
ED RYER 
ERANGE 

FREEZ 
MWAVE 

SUMMER 
TRANS 

(Constant) 
R Square 

B SE B 

1.347178E-03 5 . 06555E-05 

-3919.07440 8514 . 45126 

-2.21100E-03 6 . 58179E-03 

8.675293E-04 3 .32986E-05 

-98095.93768 9481 . 18942 

- . 03351 7.84984E-03 
-3830 . 89509 7363 . 69350 

-1498 . 88579 1907.00023 

6.168058E-04 1 . 66823E - 03 

. 01206 6 . 49089E-03 

-105.33384 

630.77098 

1554.85769 

59.35688 

211 . 95114 
-59.99303 

122 . 75181 

286.59731 

117 . 84243 
95.97684 

520 . 74348 

. 69561 

23.15967 

53 . 50343 

44 . 79690 

35.10107 

25 . 70641 

30 . 07900 

23.71915 

27 . 71219 

51 . 44860 

33.97699 

35.98106 

T Sig T 

26.595 . 0000 

-.460 .6454 

- . 336 .7370 

26.053 .0000 

-10.346 .0000 

-4.269 .0000 

-.520 . 6029 

-.78 6 . 4319 

.370 . 7116 

1. 858 . 0634 

-4.548 . 0000 

11 . 789 .0000 

34 . 709 . 0000 

1 . 691 . 0910 

8 . 245 .0000 
-1. 995 . 0462 

5 . 175 . 0000 

10 . 342 .0000 

2 . 290 . 0221 

2.825 .0048 
14.473 . 0000 
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Table I-2 . MP conditional demand model bias 
analysis 

Variable B SE B T Sig T 

CA6CDD 1 . 334629E-03 5.26719E-05 25.339 .0000 

CA6MP 4682.29766 6635 . 66703 . 706 .4805 

CA6Y -6.53400E-04 6.59584E-03 - . 099 .9211 

CA8HDD 8.338485E-04 3.38604E-05 24 . 626 .0000 

CA8MP -64806 . 01414 7655 . 59953 -8 . 465 . 0000 
CA8Y - . 01284 7.79272E-03 -1 . 647 .0996 
CCOMlMP -2256.47490 1842 . 80375 -1 . 224 .2209 
CCOMlY 6 . 134634E-04 l . 65056E-03 . 372 . 7102 

CR INCOME . 01180 6.37830E-03 1 . 850 . 0645 

CRMP - 19072 . 23735 8547.71343 · -2 . 231 . 0258 
DEHUM -109 . 97989 23 . 21684 -4 . 737 .0000 
DUMACS 665.69572 57.89863 11. 498 . 0000 
DUMHW 1156 . 83797 48.30643 23.948 .0000 
DW 53.97865 35 . 53179 1.519 . 1288 
ED RYER 203 . 42520 25.67477 7.923 . 0000 
ERANGE -50.06715 30 . 06848 -1 . 665 .0960 
FREEZ 118.50257 23 . 69028 5 . 002 . 0000 
MWAVE 278 . 97686 27.76211 10 . 049 . 0000 
SUMMER 129.33657 51.31977 2 . 520 .0118 
TRANS 25 . 66171 35.41111 . 725 . 4687 
(Constant) 566.37581 37.26701 15.198 . 0000 
R Square . 69686 
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